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Goal: Scene Understanding

Activities

ObjectsScenes

Actions

Temporal input sequence

Desert

Car

Open doorGet out of car

Leave a car in the desertPerson



One application: Image retrieval



Deep Learning - breakthrough in visual and speech recognition

Credit: B. Ginzburg



A lot of buzz about Deep Learning

Microsoft On Deep Learning for Speech goto 3:00-5:10
Credit: B. Ginzburg

https://www.youtube.com/watch?v=Nu-nlQqFCKg#t=03m00s
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Pixels Apply

Gabor filters
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length

Feature 
Vector

Credit: R. Fergus

Summary: Compare: SIFT Descriptor



What are the weakest links limiting performance?

● Replace each component of the deformable part model 
detector with humans

● Good Features (part detection) and accurate Localization 
(NMS) are most important

[Parikh & Zitnick CVPR’10]



Typical visual recognition pipeline

Feature
Extractor

e.g. SIFT, HoG...

Trainable
Classifier
e.g. SVM

Image/Video
Pixels

• Select / develop features
• Add on top of this Machine Learning for multi-class 

recognition and train classifier

Object
Class



• Build features automatically based on training data

• Combine feature extraction and classification 

• All the way from pixels  classifier

• One layer extracts features from output of previous layer

Intuition Behind Deep Neural Nets

Layer 1 Layer 2 Layer 3
“CAR”

Each box is a feature detector



Some Key Ingredients
for Convolutional 
Neural Networks



Neural networks trained via backpropagation

input vector

hidden layers 
(features)

outputs

Back-propagate                
error signal to get 
derivatives for learning 
parameters θ

Compare outputs with 
correct answer to get 

error signal L

Training
• F-Prop / B-Prop
• Learning by

stochastic gradient
descent (SGD):

• A) Compute loss L on 
small mini-batch of data

• B) Compute gradient w.r.t. θ
• C) Use gradient to update θ (make a step in the opposite direction)

weights

Non-linearity

Credit: G. Hinton

F-Prop

B-Prop



Cat

Neural networks trained via backpropagation

input vector

Compare outputs with 
correct answer to get 

error signal

Training
• F-Prop / B-Prop
• Learning by SGD:
• A) Compute loss on 

small mini-batch
• B) Compute gradient w.r.t. θ
• C) Use gradient to update θ

Back-propagate                
error signal to get 
derivatives for learning 
parameters θ

Credit: G. Hinton



Dog

Neural networks trained via backpropagation

input vector

Compare outputs with 
correct answer to get 

error signal

Training
• F-Prop / B-Prop
• Learning by SGD:
• A) Compute loss on 

small mini-batch
• B) Compute gradient w.r.t. θ
• C) Use gradient to update θ

Back-propagate                
error signal to get 
derivatives for learning 
parameters θ

Credit: G. Hinton



Neural networks testing

Cat

Credit: G. Hinton

F-Prop



Neural networks testing

Dog

Credit: G. Hinton

F-Prop



Motivation: Images as a composition of local parts
“Pixel-based” representation

Credit: M. A. Ranzato

Too many parameters!



Motivation: Images as a composition of local parts
“Patch-based” representation

Credit: M. A. Ranzato



Motivation: Images as a composition of local parts
Sparse coding example

Natural Images Learned bases (f1 , …, f64):  “Edges”
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(feature representation) 

Test example

Credit: A. Coates



Natural Images Learned bases (f1 , …, f64):  “Edges”
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Test example

• Method “invents” edge detection 

• Automatically learns to represent an image in terms of the edges that appear in it

• Gives a more succinct, higher-level representation than the raw pixels 

• Quantitatively similar to primary visual cortex (area V1) in brain 
Credit: A. Coates

Motivation: Images as a composition of local parts
Sparse coding example



Credit: M. A. Ranzato

Motivation: Images as a composition of local parts
“Patch-based” representation

Still too many parameters!



Credit: M. A. Ranzato

Motivation: Images as a composition of local parts
Convolution example



Credit: M. A. Ranzato

Motivation: Images as a composition of local parts
Convolution example



Motivation: Images as a composition of local parts
Filtering example

Credit: R. Fergus

• Why translation equivariance?

• Input translation leads to a translation of features

– Fewer filters needed: no translated replications

– But still need to cover orientation/frequency

Patch-based Convolutional

Patch-based



Convolution: The 2D case

Numerical calculation: Smoothing via local averaging
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3x3 box average filter to blur an image
(e.g., to remove noise)

Credit: S. Seitz



Convolution: The 2D case

Numerical calculation: Smoothing via local averaging
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Convolution: The 2D case

Numerical calculation: Smoothing via local averaging
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Convolution: The 2D case

Numerical calculation: Smoothing via local averaging
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Convolution: The 2D case

Numerical calculation: Smoothing via local averaging
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Convolution: The 2D case

Numerical calculation: Smoothing via local averaging
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Convolution: The 2D case

Numerical calculation: Smoothing via local averaging
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Convolution: The 2D case

Numerical calculation: Smoothing via local averaging
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Convolution: The 2D case

Numerical calculation: Smoothing via local averaging
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Convolution: The 2D case

Numerical calculation: Smoothing via local averaging
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Think of the filter as a feature detector now
(e.g., how smooth is a region?)

Credit: S. Seitz



Convolutional Neural 
Networks



Multistage HubelWiesel Architecture:
An Old Idea for Local Shift Invariance

• [Hubel & Wiesel 1962]
• Simple cells detect local features
• Complex cells “pool” the outputs of simple cells within a retinotopic neighborhood. 

Convolutional Networks
[LeCun 1988-present] 

pooling & subsampling

“Simple cells” “Complex cells”

Multiple convolutions

Retinotopic Feature Maps

Credit: Y. LeCun



Convolutional Neural Networks

• Neural network with specialized connectivity
structure

• After a few convolution and subsampling
stages, spatial resolution is very small 

• Use fully connected layers up to classification
at output layer

[LeCun et al. 1989]

[LeCun et al. 1989]



Training large ConvNets on

Imagenet database:  
• 1K classes

• ~ 1K training images per class!

• ~ 1M training images

Key ingredients for CNNs
• Large annotated dataset 
• Strong regularization (dropout)
• GPU(s) for fast processing 

 ~ 150 images/sec 
 days—weeks of training

[Russakovsky et al. ICCV’13]



ImageNet Classification 2012

• Krizhevsky et al. -- 16.4% error (top-5)

• Next best (non-convnet) – 26.2% error

0

5

10

15

20

25

30

35

SuperVision ISI Oxford INRIA Amsterdam

To
p

-5
 e

rr
o

r 
ra

te
 %

Credit: R. Fergus



Architecture of [Krizhevsky et al. NIPS’12]

Overall: 60,000,000 parameters which are trained on 2 GPUs for a week with several tricks 
to reduce overfitting
 Data augmentation
 DropOut (new regularization)

ImageNet Classification 2012
 16.4% error (top-5)
 next best (variant of SIFT + Fisher Vectors) – 26.2% error
Same idea as in [LeCun’98] but on a larger scale:
 more training images (106 vs 103)
 more hidden layers



ConvNet Architecture

• Feed-forward: 
– Convolve input

– Non-linearity (rectified linear)

– Pooling (local max)

• Supervised

• Train convolutional filters by 
back-propagating classification error

Input Image

Convolution (Learned)

Non-linearity

Pooling

Feature maps

Credit: R. Fergus



Components of Each Layer

Pixels /

Features

Filter with 
Dictionary
(convolutional
or tiled)

Spatial/Feature 

(Sum or Max) 

Normalization
between 

feature responses
Output Features

+ Non-linearity 

[Optional]

Credit: R. Fergus



• Why convolution?

– Statistics of images look similar at
different locations

– Dependencies are very local 

– Filtering is an opteration with 
translation equivariance

Input Feature Map

.

.

.

Credit: R. Fergus

Convolutional filtering



Non-Linearity

• Non-linearity applied
to each response

– Per-feature independent

– Tanh

– Sigmoid: 1/(1+exp(-x))

– Rectified linear : max(0,x)
• Simplifies backprop

• Makes learning faster

• Avoids saturation issues 
(much higher dynamic range)

 Preferred option

Credit: R. Fergus



Pooling

• Spatial Pooling

– Non-overlapping / overlapping regions (-0.3% in error)

– Sum or max

– Provides invariance to local transformations

Credit: R. Fergus

Max

Sum



Normalization

The same response for different contrasts is desired 

• Contrast normalization



• Contrast normalization (between/across feature maps)

– Local mean = 0, local std. = 1, “Local”  7x7 Gaussian 

– Equalizes the features maps

Feature Maps Feature Maps
After Contrast Normalization

Normalization

Credit: R. Fergus



Recap: Components of a CNN
CNN - multi-layer NN architecture 

– Convolutional + Non-Linear Layer

– Sub-sampling Layer

– Convolutional +Non-Linear Layer

– Fully connected layers

• Supervised 

Feature Extraction
Classi-

fication

Credit: B. Ginzburg



Summary: Components of Each Layer

Credit: A. Vedaldi



Architecture of Krizhevsky et al. 

• Trained via backprop by 
maximizing the log-prob. 
of the correct class-label

• 8 layers total

• Trained on ImageNet
dataset

Input Image

Layer 1: Conv + Pool

Layer 6: Full

Layer 3: Conv

Softmax Output

Layer 2: Conv + Pool

Layer 4: Conv

Layer 5: Conv + Pool

Layer 7: Full

Credit: R. Fergus



Improving Generalization: DropOut

Motivation:
• Random Forests generalize well due to averaging of many models

• Decision Trees are fast - ConvNets are slow – many models are not feasible

• Similar to random forest bagging [Breiman’94], but differs in 
that parameters are shared

• For fully connected layers only:
 In training: Independently set each hidden 

unit activity to zero with 0.5 probability 

 In testing multiply neuron output by 0.5

• Corresponds to averaging over exponentially many samples 
from different model architectures

[Hinton et al. NIPS’12]



• Mean removal

Centered (0-
mean) RGB 
values.

• Data 
augmentation

Train on 224x224 
patches extracted 
randomly from 
images, and also 
their horizontal 
reflections

  

Input representation

● Centered (0-mean) RGB values.

An input image (256x256) The mean input imageMinus sign

[Krizhevsky et al. NIPS’12]

Further pre-processing tricks

[Chatfield et al. BMVC’14]



ImageNet Classification 2013/2014 Results

• http://www.image-net.org/challenges/LSVRC/2013/results.php
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• Pre-2012: 26.2% error  2012: 16.5% error  2013: 11.2% error

Credit: R. Fergus



[Krizhevsky et al. NIPS’12]ImageNet Sample classifications



  

Validation classification[Krizhevsky et al. NIPS’12]ImageNet Sample classifications



ImageNet Classification Progress from ‘12-’14

Credit: Y. LeCun



Credit: K. Simonyan

ILSVRC14 Winners: ~7.3% Top-5 error
 VGG: 16 layers of 

stacked 3x3 convolution
with stride 1

Better (≈deeper) architectures exist now



Better (≈deeper) architectures exist now

ILSVRC14 Winners: ~6.6% Top-5 error
- GoogLeNet: composition of multi-scale dimension-

reduced modules:

- 1x1 convolutions serve 
as dimensionality reduction

Convolution
Pooling
Softmax
Other

Zeiler-Fergus Architecture (1 tower)

Credit: C. Szegedy

“wire together 
what fires 

together”



Classification failure cases

Groundtruth: coffee mug
GoogLeNet:
● table lamp
● lamp shade
● printer
● projector
● desktop computer

Credit: C. Szegedy



Classification failure cases

Groundtruth: hay
GoogLeNet:
● sorrel (horse)
● hartebeest
● Arabian camel
● warthog
● gaselle

Credit: C. Szegedy



Classification failure cases

Groundtruth: Police car
GoogLeNet:
● laptop
● hair drier
● binocular
● ATM machine
● seat belt

Credit: C. Szegedy



What is learned?
Visualizing CNNs

M. Zeiler & R. Fergus, Visualizing and Understanding 
Convolutional Networks, ECCV, 2014



Visualization using Deconvolutional Networks

• Provides way to map activations at 
high layers back to the input

• Same operations as Convnet, but 
in reverse:
– Unpool feature maps

– Convolve unpooled maps
• Filters copied from Convnet

• Used here purely as a probe
– Originally proposed as unsupervised 

learning method

– No inference, no learning

Input Image

Convolution (learned)

Unpooling

Feature maps

Non-linearity

[Zeiler et al. CVPR’10, ICCV’11, ECCV’14]

Credit: R. Fergus



Unpooling Operation

• Switches record where the pooled activations came from to 
“unpool” the reconstructed layer above

Credit: R. Fergus



Deconvnet Projection from Higher Layers

Input ImageVisualization

Layer 1: Feature 

maps

Layer 2: Feature 

maps

Feature
Map ....

Filters

Layer 1 

Reconstruction

Layer 2 

Reconstruction

0 0....

Filters

C
o

n
vn

et
D

ec
o

n
vn

et
[Zeiler and Fergus. ECCV’14]

Credit: R. Fergus



Visualizations of Higher Layers

• Use ImageNet 2012 validation set (stack of images)

• Push each image through network and look for image with 
the strongest activation for each  feature map

Input 
Image

Feature
Map

Lower Layers

....

Filters

Validation Images

• Take max activation from 
feature map associated with 
each filter

• Use Deconvnet to project back 
to pixel space

• Use pooling “switches” 
distinctive to that activation

Credit: R. Fergus



Layer 1 Filters

Credit: R. Fergus



Layer 1: Top-9 Patches

Credit: R. Fergus



Layer 2: Top-1

Credit: R. Fergus



Layer 2: Top-9

• Parts of input image that give strong activation of this feature map



Layer 2: Top-9 Patches

• Patches from validation images that give maximal activation of a given feature map 



Layer 3: Top-1



Layer 3: Top-9



Layer 3: Top-9 PatchesLayer 3: Top-9



Layer 4: Top-1



Layer 4: Top-9



Layer 4: Top-9 patches



Layer 5: Top-1



Layer 5: Top-9



Layer 5: Top-9 Patches



Evolution of Features During Training



Evolution of Features During Training

Credit: R. Fergus

Higher layers evolve later in later 
epochs during training.



Visualizations can be used to improve model

• Visualization of Krizhevsky et al.’s architecture showed some problems with layers 1 and 2

• Alter architecture: smaller stride & filter size

– Visualizations look better and Performance improves

Blocking artifacts
Smaller stride for 

convolution

Layer 2 filters

Credit: R. Fergus



Layer 1 filters

11x11 filters, stride 4 7x7 filters, stride 2

Too specific for low-level 
+ dead filters Restrict size (smaller)

Visualizations can be used to improve model

Credit: R. Fergus

• Visualization of Krizhevsky et al.’s architecture showed some problems with layers 1 and 2

• Alter architecture: smaller stride & filter size

– Visualizations look better and Performance improves



Occlusion Experiment

• Mask parts of input with occluding square

• Monitor output
of classification
network

• Perhaps network using scene context?

Credit: R. Fergus



Input image

p(True class) Most probable class

Credit: R. Fergus



Input image

p(True class) Most probable class

Credit: R. Fergus



Input image

p(True class) Most probable class

Credit: R. Fergus



Feature 
Generalization



ImageNet pre-training

• Labeled data is rare for detection: leverage large classification labeled datasets 
for pre-training.

• ImageNet Classification pretraining + fine-tuning on a different task has been 
shown to work very well by many people.

• [Razavian’14] took the off-the-shelf convnet OverFeat + SVM classifier on 
top and obtained many state-of-the-art or competitive results on 10+ 
datasets and visual tasks

CNN Features off-the-shelf: an Astounding Baseline for Recognition. Razavian, Ali Sharif, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. arXiv preprint 
arXiv:1403.6382 (2014).

Credit: P. Sermanet



6 training examples

Classifier re-training on Caltech 256

Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, ECCV’14

State of the art accuracy with only 6 training samples/class

Credit: R. Fergus



Feature sharing via transfer learning

• Pre-training allows to use big models for small datasets
 For example: Pre-Train model on large ImageNet 2012 training set

• Re-train on new dataset (fine tuning or transfer learning)
– Either: Just the classifier-layer or the whole network

• For fine-tuning pre-trained layers, the learning rate has to be lowered to avoid unlearning 
the pre-trained weights

• For fine tuning new layers (e.g. the new classifier layer) the learning rate has to be higher

– Better: Two stage fine-tuning

• Stage 1: First only learn new layers with the learning rate of pre-trained layers set to zero

• Stage 2: Use default learning rate to fine-tune everything (optimize all parameters jointly)

• Classify test set of new dataset

[Girshick et al. CVPR’14]



(Fine tuned) CNNs for detection on the Pascal dataset

Rich featurehierarchies for accurate object detection and semantic segmentation

Tech report

Ross Girshick1 Jeff Donahue1,2 Trevor Darrell1,2 Jitendra Malik1

1UC Berkeley and 2ICSI
{r bg, j donahue, t r evor , mal i k }@eecs. ber kel ey. edu

Abstract

Can a large convolutional neural network trained for

whole-imageclassification on ImageNet be coaxed into de-

tecting objects in PASCAL? We show that the answer is

yes, and that the resulting system is simple, scalable, and

boosts mean average precision, relative to the venerable

deformable part model, by more than 40% (achieving a fi-

nal mAP of 48% on VOC 2007). Our framework combines

powerful computer vision techniquesfor generating bottom-

up region proposals with recent advances in learning high-

capacity convolutional neural networks. We call the result-

ing system R-CNN: Regions with CNN features. The same

framework is also competitive with state-of-the-art seman-

tic segmentation methods, demonstrating its flexibility. Be-

yond these results, we execute a battery of experiments that

provide insight into what the network learns to represent,

revealing a rich hierarchy of discriminative and often se-

mantically meaningful features.

1. Introduction

Image features are the engine of recognition. Better fea-

tures immediately propel a wide array of computer vision

techniques forward. The last feature revolution was, ar-

guably, established through the introduction of SIFT [30]

and then HOG [7]. Nearly all modern object detection and

semantic segmentation systems (e.g., [5, 17]) are built on

top of one, or both, of these low-level features, serving as a

testament to their effectiveness.

Yet, the hypothesis that SIFT and HOG are now bottle-

necks throttling recognition performance has emerged over

the last few years. This hypothesis is grounded, for exam-

ple, in the wide range of papers that attempt to boost detec-

tion accuracy with work along four axes: (1) rich structured

models [20, 42]; (2) multiple feature learning [38, 41]; (3)

learned histogram-based features [11, 29, 32]; or (4) unsu-

pervised feature learning [34].

The PASCAL Visual Object Classes (VOC) Challenge

serves as the main benchmark for assessing object detec-

1. Input 
image

2. Extract region 
proposals (~2k)

3. Compute 
CNN features

aeroplane? no.

...

person? yes.

tvmonitor? no.

4. Classify 
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)

takes an input image, (2) extracts around 2000 bottom-up region

proposals, (3) computes features for each proposal using a large

convolutional neural network (CNN), and then (4) classifies each

region using class-specific linear SVMs. This system achieves a

meanaverageprecision (mAP) of 43.5% on PASCAL VOC 2010.

For comparison, [36] reports a mAP of 35.1% using the same

region proposals, but with a spatial pyramid and bag-of-visual-

words approach. Deformable part models [19] perform at 29.6%.

tor performance [15]. The 2010 and 2011 challenges were

won by combining multiple types of features and making

extensive use of context from ensembles of object detec-

torsand sceneclassifiers. Using multiple features improved

mean average precision (mAP) by at most 10% (relative),

with diminishing returns for each additional feature. In the

final year of thechallenge(2012) systemsperformed no bet-

ter than in the previous year. This plateau suggests current

methods may be limited by the available features. Here,

we take a supervised feature learning approach. Figure 1

overviews our method and highlights some of our results.

At the same time, researchers working on a broad array

of “deep learning” methodsweremaking steady progresson

improving whole-image classification. (See Bengio et al.

[3] for an excellent survey.) However, until recently these

results were isolated to datasets such as CIFAR [25] and

MNIST [28], slowing their adoption by computer vision re-

searchers for use on other tasks and image domains.

Then, Krizhevsky et al. [26] rekindled broader interest in

convolutional neural networks (CNNs) [27, 28] by showing

substantially lower error rates on the 2012 ImageNet Large

ScaleVisual Recognition Challenge (ILSVRC) [9, 10]. The

significance of their result was vigorously debated during
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• Combines bottom-up region proposals with rich features computed by a CNN

• Previous state-of-the art: 35.1% mean average precision

• scratch: Training on Pascal train+val data

• pre-train: Pre-training on ImageNet and 
just the classifier is trained on Pascal

• fine-tune: Two stage fine-tuning on Pascal

[Girshick et al. CVPR’14]



CNNs have set a new state-of-the art for many tasks

● classification

● localization

● detection

● segmentation

difficulty

Credit: P. Sermanet



Video Recognition

… except for



Goal: Scene Understanding

Activities

ObjectsScenes

Actions

Temporal input sequence

Desert

Car

Open doorGet out of car

Leave a car in the desertPerson

Actions are transitions 
from one state to another



Action classification

I. Laptev and P. Pérez, Retrieving actions in movies, ICCV'07



Large-scale Video Classification

Karpathy et al., Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014

Sports-1M dataset

• 1 million YouTube videos in 487 classes of sports



Large-scale Video Classification

Learned features of the first Layer

Karpathy et al., Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014



Large-scale Video Classification

Multiresolution architecture

• Context + Fovea Stream

Karpathy et al., Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014



• Fusing information over temporal dimension through

Large-scale Video Classification



Large-scale Video Classification

Transfer learning on UCF-101

• 13320 videos in 101 classes of sports

85.9% using Improved Dense Trajectories + 
Fisher Vectors [Wang et al. ’13]

87.6% using Two-stream CNN
[Simonyan and Zisserman ’14]

Karpathy et al., Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014



Large-scale Video Classification

Transfer learning on UCF-101

• 13320 videos in 101 classes

Karpathy et al., Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014



State of the art in Action Recognition: 
Dense Trajectories + Fisher Vectors [Wang et al. ’13]

• Low level primitive features are extracted densely at the first layer by tracking trajectories in a dense 
optical flow field 

Wang et al. “Action Recognition by Dense Trajectories.” CVPR 2011.

multiscale interest points

motion trajectory aligned pooling of primitives

…creates feature descriptors
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• Optical flow is the apparent motion of the brightness pattern between images

• Image gradients are the directional change of the intensity or colour in the image
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Histograms of Oriented Gradients (HOG)

Histograms of Optical Flow (HOF)

State of the art hand-crafted features 
within a convolutional framework

Optical flow also captures  
camera motion and parallax 



State of the art hand-crafted features 
within a convolutional framework

• Motion boundaries are the image gradients of the horizontal and vertical Optical flow components 
(i.e. u and v)

*
x

y

“Spatial filtering of 
the horizontal flow”

=

*
x

y

“Spatial filtering of 
the vertical flow”

=

dt

dx
u 

dt
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v 



Johansson: Perception of Biological Motion

Sources: Johansson, G. “Visual perception of biological motion and a model for its analysis.” Perception & Psychophysics. 14(2):201-211. 1973.
Videos were made by JB Maas in 1971 (released via Houghton-Mifflin and now available on Youtube).

Credit: J. Corso

Amazing what a human observer 
can do without spatial information



Motivation: Separate visual pathways for perception and action

The Human Visual Cortex has two 
hierarchical pathyways

• Ventral stream performs object recognition 

• Dorsal stream recognizes motion and 
locates objects

David C. Van Essen, Jack L. Gallant, Neural mechanisms of form and motion

processing in the primate visual system, 

Neuron, Volume 13, Issue 1, July 1994, Pages 1-10, ISSN 0896-6273

Spatial ConvNet?

Temporal ConvNet?



Two-Stream Convolutional Networks for Action Recognition in 
Videos

Individual processing of spatial and temporal information

• Using a separate ConvNet recognition stream for each 

• Late fusion via softmax score averaging

[Simonyan and Zisserman NIPS’14]



Spatial stream ConvNet

Same network (CNN-M) used for both streams 

• Based on [Krizhevsky et al. NIPS’12]

• Better (≈deeper) architectures exist now (see last lecture)

– GoogLeNet

– VGG Very Deep

[Chatfield et al. BMVC’14]



• Performs image classification on single RGB frames

Training:

• Supervised pre-training on ILSVRC (1.2M images in 1000 classes)

• Fine tuning of the softmax layer using the video frames

Testing

• ConvNet processes overy 25th frame of a video

• Data augmentation: 10 ConvNet inputs for each frame (crops & flips)

• Results for all ConvNets are averaged

[Simonyan and Zisserman NIPS’14]



Same model as in the spatial net exept
• Optical flow over several frames acts as input

[Simonyan and Zisserman NIPS’14]

Displacement vector field between (a) and (b)

Horizontal and vertical flow is rescaled to [0, 255] for ConvNet input

255

0

How to optimally combine optical 
flow for ConvNet input?



Optical flow stacking 

[Simonyan and Zisserman NIPS’14]

Stack horizontal and vertical displacement fields d

• Optical flow, d, over several frames, 𝜏, acts as input 𝐼𝜏 to the network

Input 𝐼𝜏 at p1 represents 
motion at p1 across 
multiple frames



Trajectory stacking 

[Simonyan and Zisserman NIPS’14]

Stack horizontal and vertical displacement fields d along the tractory
• Trajectory over several frames, 𝜏, acts as input 𝐼𝜏 to the network

Input 𝐼𝜏 at p1

represents motion 
across a trajectory 
that starts at p1



[Kuehne et al. ICCV’11]

Empirical evaluation

Datasets

• UCF101: 101 classes, 13K videos, ~180 frames in a vid

• HMDB51: 51 classes, 6.8K videos

• Evaluation protocol: average classification accuracy over 3 train and test splits



Action recognition datasets are rather small (≈10K videos)

• Many images (=frames) but they are very similar

Spatial net overfit prevention:

• Supervised pre-training on large dataset (ILSVRC 1.2M images in 1000 classes)

• Fine tuning of the softmax layer using the video frames

Temporal net:

• Multitask  Learning (train a model based on several loss functions for 
different tasks)

– Each task has its own (softmax) loss

– Total loss ≈ sum over task losses

– One Task = UCF101 classification, other task = HMDB51 classification

– Datasets are not merged, however backprop operates on the sum of both losses

[Simonyan and Zisserman NIPS’14]

Empirical evaluation: Overfit prevention



[Simonyan and Zisserman NIPS’14]

Empirical evaluation

Spatial net:

• Pre trained network is better than scratch

• Fine tuning the whole net is similar to re-train just the last layer

• Training from scratch is unpractical even with high dropout 



[Simonyan and Zisserman NIPS’14]

Empirical evaluation

Temporal net:

• Flow or trajectory stacking improves significantly 
(≈ 7% improvement in accuracy)

• Mean subtraction brings only minor improvements



[Simonyan and Zisserman NIPS’14]

Empirical evaluation

Temporal net, multi task learning:

• Additional data improves recognition

• Fine tuning a model that is trained only on a small dataset is challenging

– Small learning rate  Net stays spezialized on the original data

– Large learning rate  Net overfits the new dataset

• Combining both datasets works better than fine tuning approach

• Multi-task learning works best

– (But backpropagation operates on both datasets simultaneously)



[Simonyan and Zisserman NIPS’14]

Empirical evaluation: 
Comparison with the state of the art

• Spatial / temporal stream network is better than spatiotemporal processing

• Hand-crafted features are still better

• Datasets too small?



Image 
Pixels 
(HOG 
/SIFT…

Image 

Motion

(HOF / 
MBH …)

Apply
Gabor filters

Spatial pool 

(Sum) 

Normalize to unit 
length

Feature 
Vector

Adapted from R. Fergus

Compare: Hand-Crafted Descriptors

 Is the network able to generalize 
hand-crafted representations?



Relation to convolutional networks

• Trajectory over several frames acts as input to the network
• HOG (Histograms of Oriented Gradients) ≈ single layer in the spatial network
• HOF (Histograms of Oriented Gradients) ≈ single layer in the temporal network
• MBH (Histograms of Oriented Gradients) ≈ single layer in the temporalnetwork

[Simonyan and Zisserman NIPS’14]

First order derivative filter

≈ motion change in 
space ≈ MBH

≈ motion 
change in time



Summary

• Convolutional Networs (ConvNets) for Image Classification
– Overall architecture defines

operations in each layer

– Visualizations improve
results on ImageNet

– Fine-tuning on other datasets helps

• Representations for Video Classification
– Hand-designed features are 

still competitive

– Straightforward application of 
spatiotemporal ConvNets
performs worse

– Two-stream ConvNets
are able to generalize 
hand-crafted representations

Krizhevsky, A., Sutskever, I. and Hinton, G. E., 
ImageNet Classification with Deep Convolutional 
Neural Networks, NIPS 2012

M. Zeiler & R. Fergus, Visualizing and Understanding 
Convolutional Networks, ECCV, 2014

Wang et al., Action Recognition by Dense 
Trajectories, CVPR 2011.

Karpathy et al., Large-scale Video Classification with 
Convolutional Neural Networks, CVPR 2014

K. Simonyan & A. Zisserman, Two-Stream 
Convolutional Networks for Action Recognition in 
Videos, NIPS 2014


