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Image and Video Understanding

Christoph Feichtenhofer, Axel Pinz

Slide credits:

Many thanks to all the great computer vision researchers on which this
presentation relies on.

Most material is taken from tutorials at NIPS, CVPR and BMVC conferences.



Outline

Convolutional Networs (ConvNets) for Image Classification

— Operations in each laver Krizhevsky, A., Sutskever, I. and Hinton, G. E.,
) “ ImageNet Classification with Deep Convolutional
— Architecture Neural Networks, NIPS 2012
— Visualizations ‘ M. Zeiler & R. Fergus, Visualizing and Understanding
— Results Convolutional Networks, ECCV, 2014

Representations for Video Classification

— Hand-designed features Wang et al., Action Recognition by Dense

‘\ Trajectories, CVPR 2011.

— Spatiotemporal ConvNets | Karpathy et al., Large-scale Video Classification with
Convolutional Neural Networks, CVPR 2014

— Two-stream ConvNets K. Simonyan & A. Zisserman, Two-Stream
‘ Convolutional Networks for Action Recognition in
Videos, NIPS 2014
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One application: Image retrieval




Deep Learning - breakthrough in visual and speech recognition
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A lot of buzz about Deep Learning

Microsoft On Deep Learning for Speech goto 3:00-5:10

Credit: B. Ginzburg


https://www.youtube.com/watch?v=Nu-nlQqFCKg#t=03m00s

Summary: Compare: SIFT Descriptor

Apply
Gabor filters

Spatial pool

(Sum)

Normalize to unit [:D>Feature
length Vector

Credit: R. Fergus




What are the weakest links limiting performance?

® Replace each component of the deformable part model
detector with humans

® Good Features (part detection) and accurate Localization
(NMS) are most important
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Bl rarts
0.25|| = Spatial Models

CINMS

0.2

Improvement in AP
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INRIA PASCAL

[Parikh & Zitnick CVPR’10]



Typical visual recognition pipeline

 Select/ develop features
 Add on top of this Machine Learning for multi-class
recognition and train classifier

| Trainable
Image/Video . Object
pivels —> Classifier = e
e.g. SVM




Intuition Behind Deep Neural Nets

* Build features automatically based on training data

e Combine feature extraction and classification




Some Key Ingredients
for Convolutional
Neural Networks



Neural networks trained via bac

Compare outputs with
correct answer to get
error signal L

Back-propagate

error signal to get
derivatives for learning
parameters 0

Training

* F-Prop / B-Prop

* Learning by
stochastic gradient
descent (SGD):

 A) Compute loss L on
small mini-batch of data

 B) Compute gradient w.r.t. 6

* () Use gradient to update 6 (make a step in the opposite direction)

Kpropagation

F-Prop

<== Ooutputs

1

hidden layers

<=
(features)
~ Non-linearity
weights

<=== nput vector

Credit: G. Hinton



Neural networks trained via backpropagation

Compare outputs with
correct answer to get
error signal

Cat

Back-propagate

error signal to get
derivatives for learning
parameters 0

Training

* F-Prop / B-Prop

* Learning by SGD:

e A) Compute loss on
small mini-batch

* B) Compute gradient w.r.t. 6

* C) Use gradient to update 6

<=== nput vector

Credit: G. Hinton



Neural networks trained via backpropagation

Compare outputs with
correct answer to get

error signal
b '
¥’ .5y

Dog

Back-propagate

error signal to get
derivatives for learning
parameters 0

Training

* F-Prop / B-Prop

* Learning by SGD:

e A) Compute loss on
small mini-batch

* B) Compute gradient w.r.t. 6

* C) Use gradient to update 6

<=== nput vector

Credit: G. Hinton



Neural networks testing

Cat

F-Prop

Credit: G. Hinton



Neural networks testing

Credit: G. Hinton



Motivation: Images as a composition of local parts
“Pixel-based” representation

Example: 1000x1000 image

Credit: M. A. Ranzato



Motivation: Images as a composition of local parts
“Patch-based” representation

Credit: M. A. Ranzato



Motivation: Images as a composition of local parts
Sparse coding example

Natural Images Learned bases (¢; _ ¢g4): “Edges”

Test example

~ (.8 * 36 + 0.3 * b,y T 0.5%
[a}, ..., ag) =1[0,0,..,0,0.8,0,..,0,0.3,0,..,0,0.5, 0]

(feature representation)

Credit: A. Coates



Motivation: Images as a composition of local parts
Sparse coding example

Natural Images Learned bases (¢; _ ¢g4): “Edges”

Test example

» Method “invents” edge detection

« Automatically learns to represent an image in terms of the edges that appear in it
» Gives a more succinct, higher-level representation than the raw pixels

» Quantitatively similar to primary visual cortex (area V1) in brain Credit: A. Coates



Motivation: Images as a composition of local parts
“Patch-based” representation

Still too many parameters!

Credit: M. A. Ranzato



Motivation: Images as a composition of local parts
Convolution example

a4 Share the same parameters across
-(u different locations:

j, ) c\
@
e

Credit: M. A. Ranzato



Motivation: Images as a composition of local parts
Convolution example

multiple filters.

E.g.: 1000x1000 image
100 Filters
Filter size: 10x10
10K parameters

Credit: M. A. Ranzato



Motivation: Images as a composition of local parts
Filtering example
Why translation equivariance?

e Input translation leads to a translation of features
— Fewer filters needed: no translated replications
— But still need to cover orientation/frequency

Patch-based

1A\ AN

Patch-based Convolutional

Credit: R. Fergus



3x3 box average filter to blur an image

(e.g., to remove noise) <& D
1111
Numerical calculation: Smoothing via local averaging h p— é 111]1
1111
0(x,y)=Y F(x-k,y=Dh(k,l) |
k.l

Credit: S. Seitz



Convolution: The 2D case

1111

[ . . . . 1
Numerical calculation: Smoothing via local averaging h — 5 1(1]1
1111

g(x,y) =%‘, f(x=k,y-hh(k,1)

Credit: S. Seitz



Convolution: The 2D case

Numerical calculation: Smoothing via local averaging

g(x,y) =%‘, f(x=k,y-hh(k,1)
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Convolution: The 2D case

Numerical calculation: Smoothing via local averaging

g(x,y) =%‘, f(x=k,y-hh(k,1)
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Convolution: The 2D case

Numerical calculation: Smoothing via local averaging

g(x,y) =%‘, f(x=k,y-hh(k,1)

O+~

1111
1111
1111

10

20

30

Credit: S. Seitz




Convolution: The 2D case

Numerical calculation: Smoothing via local averaging

g(x,y) =%‘, f(x=k,y-hh(k,1)

O+~

1111
1111
1111

10

20

30

30

Credit: S. Seitz




Convolution: The 2D case

Numerical calculation: Smoothing via local averaging

g(x,y) =%‘, f(x=k,y-hh(k,1)
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Convolution: The 2D case

Numerical calculation: Smoothing via local averaging

g(x,y) =%‘, f(x=k,y-hh(k,1)
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Convolution: The 2D case

Numerical calculation: Smoothing via local averaging

g(x,y) =%‘, f(x=k,y-hh(k,1)
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Think of the filter as a feature detector now

(e.g., how smooth is a region?) \% A
1111
Numerical calculation: Smoothing via local averaging h p— é 111]1
11|12
g(x,y) =2, f(x=k y-hh(k,I) \
k.l

Credit: S. Seitz



Convolutional Neural
Networks



Multistage HubelWiesel Architecture:
An Old Idea for Local Shift Invariance

* [Hubel & Wiesel 1962]
* Simple cells detect local features
 Complex cells “pool” the outputs of simple cells within a retinotopic neighborhood.

ue: ”
Simple cells “Complex cells”

pooling & subsampling

Multiple convolutions

Convolutional Networks

[LeCun 1988-present] Retinotopic Feature Maps

Credit: Y. LeCun



Convolutional Neural Networks

Neural network with specialized connectivity
structure

After a few convolution and subsampling
stages, spatial resolution is very small

Use fully connected layers up to classification
at output layer

C3:f. maps 16@10x10
T 1:feature maps S4: 1. maps 16@5x5 [LeCun et al. 1989]
oz - S2: f. maps C5: layer gg.

6@14x14 B %™ Foilaver QUTPLT

I
Fullconr{ection I Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

[LeCun et al. 1989]



Training large ConvNets on I M .R. G E N E T

Key ingredients for CNNs

Large annotated dataset
Strong regularization (dropout)
GPU(s) for fast processing

— ~ 150 images/sec

— days—weeks of training

Imagenet database:

1K classes

~ 1K training images per class!

~ 1M training images

Screwdriver Hltchet Lady buo Honeycomb

Amount of Texture

Bael Red Wine

Color Distinctiveness

Shape Distinctiveness

Airthner

Orange Mask Parachute

Zy
Real-world Size

Low High
[Russakovsky et al. ICCV’'13]



ImageNet Classification 2012

e Krizhevsky et al. -- 16.4% error (top-5)
e Next best (non-convnet) — 26.2% error

35

w
o

N
w

N
o

Top-5 error rate %
[E=Y
(9]

=
o

u

o

SuperVision ISI Oxford INRIA Amsterdam

Credit: R. Fergus



Architecture of [Krizhevsky et al. NIPS'12]

ImageNet Classification 2012

— 16.4% error (top-5)

— next best (variant of SIFT + Fisher Vectors) — 26.2% error
Same idea as in [LeCun’98] but on a larger scale:

— more training images (10° vs 103)

— more hidden layers

55 — _
27
13 13 13

N
1 L 1
N 3 ~4 O s
R 5 — =i 3\ T —_- 3 —r == - > >
11 0 — oy T o 13 N - 13 35: - % 13 dense dense
- +

384 384 256 100¢C
Max

Max Max pooling

Stride\| o5 | POOliNg pooling

of 4

|,
\I

55

4096 4096

224

3
Overall: 60,000,000 parameters which are trained on 2 GPUs for a week with several tricks
to reduce overfitting

— Data augmentation

— DropOut (new regularization)



ConvNet Architecture

Feature maps

)
—

e Feed-forward:

— Convolve input

— Non-linearity (rectified linear)
— Pooling (local max)

e Supervised

e Train convolutional filters by
back-propagating classification error

3
i
i

)

Convolution (Learned) }

C3:f. maps 16@10x10 G

C1: feature maps S4:1. maps 16@5x5

6@28x28 S o
V4 . . layer .
6@14x14 720 7 FS: layer QUTPUY

INPUT
32x32

Input Image

)
-

[
| Fulloon*edion ‘ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection
Credit: R. Fergus



Pixels /
Features

[Optional]

Components of Each Layer

Filter with * Non-linearity
Dictionary A
(convolutional <€ ﬁ- >

or tiled)

|-

A |
\ /N
\ /o Nz

:> Output Features

Credit: R. Fergus

Spatial/Feature
(Sum or Max)

Normalization
between
feature responses



Convolutional filtering

e Why convolution?

— Statistics of images look similar at
different locations

— Dependencies are very local

— Filtering is an opteration with
translation equivariance

Credit: R. Fergus



* Non-linearity applied

— Per-feature independent
— Tanh

: 1/(1+exp(-x))
— Rectified linear : max(0,x)
e Simplifies backprop I

e Makes learning faster

relulx)

* Avoids saturation issues 1
(much higher dynamic range)

— Preferred option

Credit: R. Fergus



e Spatial Pooling
— Non-overlapping / overlapping regions (-0.3% in error)
— Sum or max
— Provides invariance to local transformations

Sum

Credit: R. Fergus



Normalization

e Contrast normalization

The same response for different contrasts is desired



Crdel A | b el
e Contrast nor o S8 ‘eature maps)

s AMOTE. o= SIS
— Local mean R, e e

- ——

— Equalizes th

Feature Maps Feature Maps
After Contrast Normalization

Credit: R. Fergus



Recap: Components of a CNN
CNN - multi-layer NN architecture
— Convolutional + Non-Linear Layer
— Sub-sampling Layer
— Convolutional +Non-Linear Layer
— Fully connected layers

e Supervised

EE R

Input layer I I f

Convol.

™~

LCN Pooling

convolution layer | sub-sampling layer | convolution layer | sub-sampling layer | fu||y connected ML

Credit: B. Ginzburg

L=



Summary: Components of Each Layer

linear 3D filters downsampling
Xx— (Fb) —»y=F=xx+0b | —>Y
RelLU normalization

X—> ‘4 —y = max{0, x} X—»{ sliding 2 —»Y

|
|
= =
spatial pooling n =
| |
| | |
| Yijk = Max Xpgk
X—»|  max J pqeQy; T

Credit: A. Vedaldi



Architecture of Krizhevsky et al.

[ Softmax Output }

One output unit per class
x; = total input to output unit ¢ A
() = Sombes s
e Trained via backprop by
maximizing the log-prob. T .
of the correct class-label 3 g
S G
e 8 layers total 2 -
0 LL
e Trained on ImageNet ( - \
dataset Layer 2: Conv + Pool
) = g
Layer 1. Conv + Pool
) =5
Input Image

& J

Credit: R. Fergus



Improving Generalization: DropOut
[Hinton et al. NIPS’12]

Motivation:
e Random Forests generalize well due to averaging of many models
e Decision Trees are fast - ConvNets are slow — many models are not feasible

Similar to random forest bagging [Breiman’94], but differs in

that pa ra mEte s are Sha red A hidden layer's activity on a given training image
For fully connected layers only: H N BN H B
— Intraining: Independently set each hidden T T
unit activity to zero with 0.5 probability | | | |
A hidden unit A hidden unit
— In testing multiply neuron output by 0.5 turned off by unchanged

dropout

Corresponds to averaging over exponentially many samples
from different model architectures



Further pre-processing tricks

e Mean removal

Centered (O-
mean) RGB
values.

e Data
augmentation

Train on 224x224
patches extracted
randomly from
images, and also
their horizontal
reflections

Minus sign

The mean input image

[Krizhevsky et al. NIPS’12]

[Chatfield et al. BMVC’14]



ImageNet Classification 2013/2014 Results

e http://www.image-net.org/challenges/LSVRC/2013/results.php
0,17

0,16 ||
-]

0,1 VGG Team ILSVRC Progress B B

0,1¢ 30 —

0,1: 20 -

0,1. 10 -

0,1: 0 -

e Pre-2012:26.2% error 2 2012:16.5% error = 2013:11.2% error

Credit: R. Fergus



ImageNet Sample classifications [Krizhevsky et al. NIPS'12]

mite __ container ship motor scooter

mite container ship motor scooter ledpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
; v » 9
w - L , " ;
i~ w {

grille mushroom cherry Madagascar cat
convertible agaric dalmatiah squirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey




ImageNet Sample classifications

[Krizhevsky et al. NIPS’12]

lex camera abacus slug hen|
Polaroid camera| | typewriter keyboard zucchini cock
pencil sharpener space bar ground beetle cocker spaniel

switch| | computer keyboard common newt partridge
combination lock accordion water snake English setter

|
\

~ _

tépe playr planetarium

chaed nautilus

B tiger lampshade cellular telephone planetarium
tiger cat throne slot dome
tabby goblet reflex camera mosque
boxer table lamp dial telephone radio telescope

Saint Bernard hamper iPod steel arch bridge







Better (=deeper) architectures exist now

ILSVRC14 Winners: ~¥7.3% Top-5 errors

— VGG: 16 layers of
stacked 3x3 convolution e
W|th St”de 1 maxpool

conv-128

conv-128

maxpool

15t 3x3 conv. layer
conv-256

conv-256
ncl
2" 3x3 conwv. layer maxpool

conv-512

Other details: conv-512

maxpool

Rectification (ReLU) non-linearity

conv-512

5 max-pool layers (x2 reduction) conv-512

maxpool

no normalisation —

3 fully-connected (FC) layers Eiiﬁﬂﬁ

softmax
Credit: K. Simonyan



Better (=deeper) architectures exist now

ILSVRC14 Winners: ~6.6% Top-5 error
- GoogleNet: composition of multi-scale dimension-
reduced modules:

Convolution
Pooling

Other

“wire together
what fires

together”

- 1x1 convolutions serve — | ectams | | seoos | | 10 ok

as dimensionality reduction L] [ | [

Credit: C. Szegedy



Classification failure cases

Groundtruth: coffee mug

GoogleNet:

e tablelamp

lamp shade
printer

projector

desktop computer

Credit: C. Szegedy



Classification failure cases

Groundtruth: hay
GoogleNet:

e sorrel (horse)
hartebeest
Arabian camel
warthog
gaselle

Credit: C. Szegedy



Classification failure cases

laptop

hair drier
binocular
ATM machine
seat belt

Credit: C. Szegedy



What is learned?
Visualizing CNNs

M. Zeiler & R. Fergus, Visualizing and Understanding
Convolutional Networks, ECCV, 2014



Visualization using Deconvolutional Networks
[Zeiler et al. CVPR’10, ICCV’11, ECCV’14]

e Provides way to map activations at

high layers back to the input [ Feature maps }
e Same operations as Convnet, but [ Unpooling }
In reverse:

-

— Unpool feature maps [

— Convolve unpooled maps
e Filters copied from Convnet

Non-linearity 1

-

[ Convolution (learned) }

* Used here purely as a probe @
— Originally proposed as unsupervised
learning method [ Input Image }

— No inference, no learning
Credit: R. Fergus



Unpooling Operation

e Switches record where the pooled activations came from to
“unpool” the reconstructed layer above

Layer Above I
. ‘I‘ ‘“}OM N

Unpoohng Pooling

Max Locations

l “Switches”

Unpooled Rectified
Maps Feature Maps

Credit: R. Fergus



Deconvnet Projection from Higher Layers

[Zeiler and Fergus. ECCV’14]
B \ B g [

. . Filters

[ Layer 2 } [ Layer 2: Feature }
Reconstruction maps

)

= O
S @)
c [ Layer 1 } [ Layer 1: Feature } 2
8 Reconstruction S
v S
QO

mf
[ Visualization } [ Input Image }

Credit: R. Fergus




Visualizations of Higher Layers

e Use ImageNet 2012 validation set (stack of images)

e Push each image through network and look for image with
the strongest activation for each feature map

. Take max activation from
feature map associated with
each filter

e Use Deconvnet to project back

' to pixel space

E E - W
|
I

 Use pooling “switches”
distinctive to that activation

Validation Images _
Credit: R. Fergus



Layer 1 Filters

Credit: R. Fergus



: Top-9 Patches
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Layer 2: Top-1

Credit: R. Fergus
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Evolution of Features During Training
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Evolution of Features During Training

=» Higher layers evolve later in later
epochs during training.




Visualizations can be used to improve model

e Visualization of Krizhevsky et al.’s architecture showed some problems with layers 1 and 2
e Alter architecture: smaller stride & filter size

— Visualizations look better and Performance improves

, , Smaller stride for
Blocking artifacts convolution




Visualizations can be used to improve model

e Visualization of Krizhevsky et al.’s architecture showed some problems with layers 1 and 2
e Alter architecture: smaller stride & filter size

— Visualizations look better and Performance improves

Too specific for low-level
+ dead filters

¥

Restrict size (smaller)

11x11 filters, stride 4 7x7 filters, stride 2

Credit: R. Fergus



Occlusion Experiment
e Mask parts of input with occluding square
e Monitor output

of classification
network

e Perhaps network using scene context?

Credit: R. Fergus



Input image

p(True class)
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Credit: R. Fergus



Input image
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Input image

p(True class)

True Label: Afghan Houn

EERO0OOOEEN
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Most probable class

Afghan houwnd
Gordon setter
Irish setter
Morarboard
Fur coat
Academic gown
Australian terher
Ice lolly
Vizsla
Meck brace

redit: R. Fergus



Feature
Generalization



ImageNet pre-training

* Labeled data is rare for detection: leverage large classification labeled datasets
for pre-training.
* ImageNet Classification pretraining + fine-tuning on a different task has been

shown to work very well by many people.
* [Razavian’14] took the off-the-shelf convnet OverFeat + SVM classifier on

top and obtained many state-of-the-art or competitive results on 10+
datasets and visual tasks

|I]n Best state of the art 00 CNN off-the-shelf 00 CNN off-the-shell + angmentation 00 Specialized CNN
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CNN Features off-the-shelf: an Astounding Baseline for Recognition. Razavian, Ali Sharif, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. arXiv preprint
arXiv:1403.6382 (2014). .
( ) Credit: P. Sermanet



Classifier re-training on Caltech 256

State of the art accuracy with only 6 training samples/class
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Training Images per—class

Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, ECCV’14 Credit: R. Fergus



Feature sharing via transfer learning

e Pre-training allows to use big models for small datasets
— For example: Pre-Train model on large ImageNet 2012 training set

=mr g"!-i,\\ i fine-tune cwﬁ'%%

Auxiliary task: Target task:
ILSVRC 2012 classification PASCAL VOC detection
(1.2 million images) (~25k object labels) [Girshick et al. CVPR’14]

e Re-train on new dataset (fine tuning or transfer learning)

— Either: Just the classifier-layer or the whole network

e For fine-tuning pre-trained layers, the learning rate has to be lowered to avoid unlearning
the pre-trained weights

e For fine tuning new layers (e.g. the new classifier layer) the learning rate has to be higher
— Better: Two stage fine-tuning

e Stage 1: First only learn new layers with the learning rate of pre-trained layers set to zero

e Stage 2: Use default learning rate to fine-tune everything (optimize all parameters jointly)

e (lassify test set of new dataset



(Fine tuned) CNNs for detection on the Pascal dataset

 Combines bottom-up region proposals with rich features computed by a CNN

R-CNN: Regionswith CNN features

1 warped region aeroplane? no.
S| arped reg 7 D
] ~ - I .
bl -ﬁ ' = %j%» person? yes.
.‘ , ‘ N g CNN > :
o WA L \‘ ' Q tvmonitor? no.
2. Extract region 3. Compute 4. Classify
Image proposals (~2Kk) CNN features regions

[Girshick et al. CVPR’14]
* Previous state-of-the art: 35.1% mean average precision

e scratch: Training on Pascal train+val data
PASCAL-DET

e pre-train: Pre-training on ImageNet and
just the classifier is trained on Pascal scratch pre-train fine-tune
e fine-tune: Two stage fine-tuning on Pascal 40.7 45.5 54.1




CNNs have set a new state-of-the art for many tasks

classification

localization

detection

segmentation

3

Top 5:

pencil sharpener
pool table

hand blower

oil filter

packet

Groundtruth:
pencil sharpener

VRC2012_val 00010000 JPEG

Groundtruth:
white wolf
white wolf (2)
white wolf (3)
white wolf (4)
white wolf (5)

Groundtruth:

tv or monitor

tv or monitor (2)
tv or monitor (3)
person

remote control
remote control (2)

N

difficulty

Credit: P. Sermanet



... except for

Video Recognition



Person
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~

Scenes Objects

o

Actions

Activities

J

Desert

Goal: Scene Understanding Car

=» Actions are transitions
from one state to another

'emporal input sequente

Get out of car] Open door




Action classification

training samples test samples
P

I. Laptev and P. Pérez, Retrieving actions in movies, ICCV'07



Large-scale Video Classification

Sports-1M dataset
* 1 million YouTube videos in 487 classes of sports

Sports Video

Classification

Karpathy et al., Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014



Large-scale Video Classification

Learned features of the first Layer

Karpathy et al., Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014



Large-scale Video Classification

Multiresolution architecture
e (Context + Fovea Stream

Karpathy et al., Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014



Large-scale Video Classification

* Fusing information over temporal dimension through

Single Frame Late Fusion Early Fusion  Slow Fusion
| | | | | | | |
— | — — —— | = |
— — — — =
— —— —— —— =
[— — — — 4
— ‘— ‘— — o
I — — I— s
1 | T o T,
Model Clip Hit@1l Video Hit@1 Video Hit@5
Feature Histograms + Neural Net - 55.3 -
Single-Frame 41.1 59.3 77.7
Single-Frame + Multires 42.4 60.0 78.5
Single-Frame Fovea Only 30.0 49.9 72.8
Single-Frame Context Only 38.1 56.0 77.2
Early Fusion 38.9 57.7 76.8
Late Fusion 40.7 59.3 78.7
Slow Fusion 41.9 60.9 80.2
CNN Average (Single+Early+Late+Slow) 41.4 63.9 82.4




Large-scale Video Classification

Transfer learning on UCF-101
* 13320 videosin 101 classes

Model 3-fold Accuracy ﬁf
Soomro et al [22 43.9% 1
Feature Histograms + Neural Net 59.0%

Train from scratch 41.3% RAp eS|
Fine-tune top layer 64.1% —
Fine-tune top 3 layers 65.4%

Fine-tune all layers 62.2%

Table 3: Results on UCF-101 for various Transfer Learning
approaches using the Slow Fusion network.

85.9% using Improved Dense Trajectories +
Fisher Vectors [Wang et al. "13]

Front Crawl

0 i _ 4 : o S
87:61: using Two stream CNN *I’! ‘ = 0 | ety , %;g“
[Simonyan and Zisserman ’14] e : — —— =

o~ [ e
jor . ! =l Y

Jetski Sumo Wrestling T g | Throw Discus

Uneven Bars |[Volleyball Spiking

Karpathy et al., Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014



Large-scale Video Classification

Transfer learning on UCF-101
13320 videos in 101 classes P‘g EN

Gl‘()l.lp Rock Climbing Indc Rnpc".“lmlhmg

Human-Object Interaction
Body-Motion Only
Human-Human Interaction
Playing Musical Instruments 0.42 0.65 0.46
Sports
All groups

Uneven Bars {Volleyball Spiking

Karpathy et al., Large-scale Video Classification with Convolutional Neural Networks, CVPR 2014



State of the art in Action Recognition:
[ Dense Trajectories +]Fisher Vectors [Wang et al. "13]

Low level primitive features are extracted densely at the first layer by tracking trajectories in a dense
optical flow field

[ motion trajectory aligned pooling of primitives ]

. Tracking in each spatial scale separatel i inti
Dense sampling g p P Yy Trajectory description
in each spatial scale
_____ -
- ""-q.. h"‘”--”’
- --’-/ --‘--::"._____—..d’/ "‘\\‘.
/ et
,/
For I
XN v NS
KX \,x ‘Vx &,X
’R;x X

[ multiscale interest points ]

{ ...creates feature descriptors ]

Wang et al. “Action Recognition by Dense Trajectories.” CVPR 2011



= Optical flow also captures

camera motion and parallax

e Optical flow is the apparent motion of the brightness pattern between images
* Image gradients are the directional change of the intensity or colour in the image

Optical flow

“Temporal filtering
of the intensity”

dx
Histograms of Optical Flow (HOF)

Image gradients

“Spatial filtering of

image 1 (X, y,t)A | the intensity” \ ly

Histograms of Oriented Gradients (HOG)




State of the art hand-crafted features
within a convolutional framework

e Motion boundaries are the image gradients of the horizontal and vertical Optical flow components
(i.e.uandv)

Horizontal motion boundaries

“Spatial filtering of
the horizontal flow”

Verti_cal motion boundaries

N

“Spatial filtering of §_ i
the vertical flow” Q.



Johansson: Perception of Biological Motion

= Amazing what a human observer

can do without spatial information

Sources: Johansson, G. “Visual perception of biological motion and a model for its analysis.” Perception & Psychophysics. 14(2):201-211. 1973.
Videos were made by JB Maas in 1971 (released via Houghton-Mifflin and now available on Youtube).

Credit: J. Corso



Motivation: Separate visual pathways for perception and action

The Human Visual Cortex has two
hierarchical pathyways

Ventral stream performs object recognition

Dorsal stream recognizes motion and
locates objects

Spatial ConvNet?

/ WHERE? (Motion, 'K) \

Spatial Relationshi AT? (Form, Color)

Temporal ConvNet?

[Parietal stream] [Inferotemporal stream]
PP ») 4] A,
CIT
MSTd = sST!
i PIT
"
WS ol MD stream
MT M d‘g;, (magno-domfinated)
V4 BD str.eam
(blob-domingted)
V2 | =
oo dap ID stream
Thick Thi! Inter- (interblob-dominated)
stiipe stri stripe
9 Blob Inter-
" blob
V1| 5160 -
4Cal —> 4Cb
Retina, -
LGN ;
\,A_Qummm_—r_mm( - /
i i irection Pattern (plaid) L~ CY—
:{%x fsrz:tulglncy &0 Disparity 7. motion O movements
X (hi Wavelength ¥(O3 Non-Cartesian
o <ngh/low|> <@ Wavelength {0 Non-C:
VWY empora » Subjective i
frequency () Non-Cartesian
M (igh/iow) contots pattern (©) Faces

David C. Van Essen, Jack L. Gallant, Neural mechanisms of form and motion

processing in the primate visual system,
Neuron, Volume 13, Issue 1, July 1994, Pages 1-10, ISSN 0896-6273



Two-Stream Convolutional Networks for Action Recognition in

Videos

Spatial stream ConvNet

conv1 || conv2 || conv3 || conv4 || conv5 fullé full7 |[softmax
7X7x96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2
pool 2x2 || pool 2x2
P
. Temporal stream ConvNet
‘ conv1 || conv2 || conv3 || conv4 || conv5 fullé full7 ||softmax
7x7x96 ||5x5x256 || 3x3x512 || 3x3x512 || 3x3x512|| 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
input . norm. || pool 2x2 pool 2x2
video multi-frame pool 2x2

. optical flow

Figure 1: Two-stream architecture for video classification.

Individual processing of spatial and temporal information
e Using a separate ConvNet recognition stream for each

e Late fusion via softmax score averaging

class
score
fusion

[Simonyan and Zisserman NIPS’14]



Spatial stream ConvNet

CNN-F similar to Krizhevsky et al:; NIPS 2012:

‘ImageNet classification with deep convolutional networks’

CNN-M similar to Zeiler and Fergus, CoRR 201 3:

‘Visualising and understanding convolutional networks’

[Chatfield et al. BMVC'14]
Same network (CNN-M) used for both streams

e Based on [Krizhevsky et al. NIPS’12]
e Better (=deeper) architectures exist now (see last lecture)

— GoogleNet
— VGG Very Deep



Spatial stream ConvNet

conv1 || conv2 || conv3 || conv4 || conv5 fullé full7 ||softmax
7X7x96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 4096 2048

stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
norm. norm. pool 2x2

\_ single frame / pool 2x2 [| pool 2x2

e Performs image classification on single RGB frames

Training:
e Supervised pre-training on ILSVRC (1.2M images in 1000 classes)
e Fine tuning of the softmax layer using the video frames

Testing

e ConvNet processes overy 25t frame of a video

e Data augmentation: 10 ConvNet inputs for each frame (crops & flips)
e Results for all ConvNets are averaged

[Simonyan and Zisserman NIPS’14]



Temporal stream ConvNet

I conv1 || conv2 || conv3 || conv4 || conv5 fullé full7 ||softmax
7X7X96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout
. norm. ||pool 2x2 pool 2x2
multi-frame pool 2x2

\_ optical flow} )

same model as in the spatial net exept Displacement vector field between (a) and (b)
* Optical flow over several frames acts as input

| r = How to optimally combme optlcal
\ V=SS S|

Figure 2: Optical flow. (a),(b): a pair of consecutive video frames wit
ing hand outlined with a cyan rectangle. (c): a close-up of dense optica
(d): horizontal component d* of the displacement vector field (higher 2

itive values, lower intensity to negative values). (e): vertical compg
highlight the moving hand and bow. The input to a ConvNet contgdins multiple flows (Sect. 3.1).

Horizontal and vertical flow is rescaled to [0, 255] for ConvNet input

[Simonyan and Zisserman NIPS’14]



Optical flow stacking

Stack horizontal and vertical displacement fields d
* Optical flow, d, over several frames, T, acts as input I to the network

\
Input I at p, represents
motion at p, across
multiple frames
. J

(~ ) P1
\ — d.2(py) =

p
— d-1(py) <:| —

~ ) | BT

input volume channels
I (u,v,c) at point
pl — (u7 U) T

[Simonyan and Zisserman NIPS’14]




Trajectory stacking

Stack horizontal and vertical displacement fields d along the tractory
* Trajectory over several frames, 7, acts as input I, to the network

p

(Input I; atp,; A

;3 represents motlon

across a trajectory

P> T+ 2 that starts at
\ S,
T+ 1
A

[Simonyan and Zisserman NIPS’14]



Empirical evaluation

Datasets
e UCF101: 101 classes, 13K videos, ~180 frames in a vid
e HMDB51: 51 classes, 6.8K videos

e Evaluation protocol: average classification accuracy over 3 train and test splits

Ll

brush cartwheel catch chew

climb

. push pushup ride
%‘TE’—”S bike horse
dribble drink fall fenc'” shoot shoot situp smile smoke somersault

bow gun
E E = !
stand swing sword

baseball exercise

pour pullup punch
ball

[Kuehne et al. ICCV’11]



Empirical evaluation: Overfit prevention

Action recognition datasets are rather small (10K videos)

e Many images (=frames) but they are very similar

Spatial net overfit prevention:

e Supervised pre-training on large dataset (ILSVRC 1.2M images in 1000 classes)
e Fine tuning of the softmax layer using the video frames

Temporal net:

e Multitask Learning (train a model based on several loss functions for
different tasks)

Each task has its own (softmax) loss

Total loss = sum over task losses

One Task = UCF101 classification, other task = HMDB51 classification

Datasets are not merged, however backprop operates on the sum of both losses

[Simonyan and Zisserman NIPS’14]



Spatial net:

Empirical evaluation

e Pre trained network is better than scratch

ine tuning the whole net is similar to re-train just the last layer

e Trajning from scratch is unpractical even with high dropout

Table 1: Indit

Training setting \

t ratio

idual ConvNets accuracy on UCF-101 (split 1).

0.9

From scratch

52.3%

Pre-trained + fine-tuning

72.8%

Pre-trained + last layer

59.9%

(b) Temporal ConvNet.
Input configuration Mean subtraction
off on
Single-frame optical flow (L = 1) - 73.9%
Optical flow stacking (1) (L = 5) 80.4%

Optical flow stacking (1) (L = 10)

79.9% | 81.0%

Trajectory stacking (2)(L = 10)

79.6% | 80.2%

Optical flow stacking (1)(L = 10), bi-dir.

- 81.2%

[Simonyan and Zisserman NIPS’14]



Empirical evaluation

Temporal net:

e Flow or trajectory stacking improves significantly
(= 7% improvement in accuracy)

e Mean subtraction brings only minor improv

(a) Spatial ConvNet.

.. . Dropout ratio . n subtraction
Training setting 0 5p S Input configuration S o
From scratch 42.5% | 52.3% | | Single-frame optical flow (L = 1) - ‘ 73.9%
Pre-trained + fine-tuning | 70.8% | 72.8% | | Optical flow stacking (1) (L = 5) - 80.4%
Pre-trained + last layer | 72.7% | 59.9% | | Optical flow stacking (1) (L = 10) 79. 81.0%

Trajectory stacking (2)(L = 10) 79.6% | 80.2%
Optical flow stacking (1)(L = 10), bi-dir. - 81.2%

[Simonyan and Zisserman NIPS’14]



Empirical evaluation

Table 2: Temporal ConvNet accuracy on HMDB-51 (split 1 with additional training data).

Training setting Accuracy
Training on HMDB-51 without additional data 46.6%
Fine-tuning a ConvNet, pre-trained on UCF-101 49.0%
Training on HMDB-51 with classes added from UCF-101 52.8%
Multi-task learning on HMDB-51 and UCF-101 55.4%

Temporal net, multi task learning:
e Additional data improves recognition
e Fine tuning a model that is trained only on a small dataset is challenging

— Small learning rate =» Net stays spezialized on the original data
— Large learning rate =» Net overfits the new dataset

e Combining both datasets works better than fine tuning approach
e Multi-task learning works best

— (But backpropagation operates on both datasets simultaneously)

[Simonyan and Zisserman NIPS’14]



Empirical evaluation:
Comparison with the state of the art

Table 4: Mean accuracy (over three splits) on UCF-101 and HMDB-51.

Method UCF-101 | HMDB-51

Improved dense trajectories (IDT) [26, 27] 85.9% 57.2%
IDT with higher-dimensional encodings [20] 87.9% 61.1%
IDT with stacked Fisher encoding [21] (based on Deep Fisher Net [23]) - 66.8 %
Spatio-temporal HMAX network [11, 16] - 22.8%
“Slow fusion” spatio-temporal ConvNet [14] 65.4% -

Spatial stream ConvNet 73.0% 40.5%
Temporal stream ConvNet 83.7% 54.6%
Two-stream model (fusion by averaging) 86.9% 58.0%
Two-stream model (fusion by SVM) 88.0% 59.4%

Spatial / temporal stream network is better than spatiotemporal processing
Hand-crafted features are still better
Datasets too small?

[Simonyan and Zisserman NIPS’14]



Compare: Hand-Crafted Descriptors

Apply
Gabor filters

Normalize to unit Feature
length [> Vector

Adapted from R. Fergus




Relation to convolutional networks

* Trajectory over several frames acts as input to the network

* HOG (Histograms of Oriented Gradients) = single layer in the spatial network

* HOF (Histograms of Oriented Gradients) = single layer in the temporal network
 MBH (Histograms of Oriented Gradients) = single layer in the temporalnetwork

First order derivative filter
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Summary

e Convolutional Networs (ConvNets) for Image Classification

— Overall architecture defines
operations in each layer ‘

— Visualizations improve ‘
results on ImageNet

Krizhevsky, A., Sutskever, I. and Hinton, G. E.,
ImageNet Classification with Deep Convolutional
Neural Networks, NIPS 2012

M. Zeiler & R. Fergus, Visualizing and Understanding
Convolutional Networks, ECCV, 2014

— Fine-tuning on other datasets helps

* Representations for Video Classification

— Hand-designed features are
still competitive

— Straightforward application of

Wang et al., Action Recognition by Dense
Trajectories, CVPR 2011.

Karpathy et al., Large-scale Video Classification with

spatiotemporal ConvNets ‘\ Convolutional Neural Networks, CVPR 2014

performs worse

K. Simonyan & A. Zisserman, Two-Stream

— Two-stream ConvNets ‘ Convolutional Networks for Action Recognition in

are able to generalize
hand-crafted representations

Videos, NIPS 2014




