
Image and Video Understanding

2VO 710.095 WS

Christoph Feichtenhofer, Axel Pinz

Slide credits:
Many thanks to all the great computer vision researchers on which
this presentation relies on.

Further reading: Szeliski, Richard. Computer Vision: Algorithms and
Applications. Springer, 2010, Chapter 3, Section 3.1-3.5

Outline

• Linear filtering and the importance of convolution

– Apply a filtermask to the local neighborhood at each pixel in the image

– The filtermask defines how to combine values from neighbors.

– Can be used for

• Extract intermediate representations to abstract images by higher-level
“features”, for further processing (i.e., preserve the useful information only
and discard redundancy)

• Image modification, e.g., to reduce noise, resize, increase contrast, etc.

• Match template images (e.g. by correlating two image patches)

• Image filtering in the frequency domain

– Provides a nice way to illustrate the effect of linear filtering

• Filtering is a way to modify the frequencies of images

– Efficient signal filtering is possible in that domain

– The frequency domain offers an alternative way to understanding and
manipulating the image.

Motivation: Images as a composition of local parts
“Pixel-based” representation

Credit: M. A. Ranzato

Too many parameters!

Motivation: Images as a composition of local parts
“Patch-based” representation

Credit: M. A. Ranzato

Motivation: Images as a composition of local parts
Sparse coding example

Natural Images Learned bases (f1 , …, f64): “Edges”

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

 0.8 * + 0.3 * + 0.5 *

x  0.8 * f
36

+ 0.3 * f42 + 0.5 * f63

[a1, …, a64] = [0, 0, …, 0, 0.8, 0, …, 0, 0.3, 0, …, 0, 0.5, 0]
(feature representation)

Test example

Credit: A. Coates

Natural Images Learned bases (f1 , …, f64): “Edges”

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

 0.8 * + 0.3 * + 0.5 *

Test example

• Method “invents” edge detection

• Automatically learns to represent an image in terms of the edges that appear in it

• Gives a more succinct, higher-level representation than the raw pixels

• Quantitatively similar to primary visual cortex (area V1) in brain
Credit: A. Coates

Motivation: Images as a composition of local parts
Sparse coding example

Credit: M. A. Ranzato

Motivation: Images as a composition of local parts
“Patch-based” representation

Still too many parameters!

Credit: M. A. Ranzato

Motivation: Images as a composition of local parts
Convolution example

Credit: M. A. Ranzato

Motivation: Images as a composition of local parts
Convolution example

Motivation: Images as a composition of local parts
Convolution example

• Why convolution?

– Statistics of images look similar at
different locations

– Dependencies are very local

– Filtering is an opteration with
translation equivariance

Input Feature Map

.

.

.

Credit: R. Fergus

Motivation: Images as a composition of local parts
Filtering example

Credit: R. Fergus

• Why translation equivariance?

• Input translation leads to a translation of features

– Fewer filters needed: no translated replications

– But still need to cover orientation/frequency

Patch-based Convolutional

Patch-based

Linear filtering

Further reading: Szeliski, Richard. Computer Vision: Algorithms and
Applications. Springer, 2010, Chapter 3, Section 3.2

Basics: Smoothing via local averaging

Graphic depiction

f

)(xf

Formalization

• We begin by considering a function:

Credit: R. Wildes

2

1

Basics: Smoothing via local averaging

Graphic depiction

f

h

)(xf

Formalization

• We begin by considering a function:

• And we multiply it with values of
another function:

Credit: R. Wildes

hxf)(

2

1

1/3

Basics: Smoothing via local averaging

Graphic depiction

f

h

)(xf

Formalization

• We begin by considering a function:

• And we multiply it with values of
another function:

• But we do this at various offsets:

Credit: R. Wildes

hxf)(

)()(shsxf 

2

1

1/3

Basics: Smoothing via local averaging

Graphic depiction

f

h

)(xf

Formalization

• We begin by considering a function:

• And we multiply it with values of
another function:

• But we do this at various offsets:

• and multiply by infinitesimal support
elements:

Credit: R. Wildes

hxf)(

)()(shsxf 

dsshsxf)()(

2

1

1/3

Basics: Smoothing via local averaging

Graphic depiction

f

h

)(xf

Formalization

• We begin by considering a function:

• And we multiply it with values of
another function:

• But we do this at various offsets:

• and multiply by infinitesimal support
elements:

• Finally, we sum up (integrate):

Credit: R. Wildes

hxf)(

)()(shsxf 

dsshsxf)()(

  dsshsxf)()(

2

1

1/3

Basics: Smoothing via local averaging

Graphic depiction

• We call this operation * a convolution

*

f

h

f*h

)(xf

Formalization

• We begin by considering a function:

• And we multiply it with values of
another function:

• But we do this at various offsets:

• and multiply by infinitesimal support
elements:

• Finally, we sum up (integrate):

Credit: R. Wildes

hxf)(

)()(shsxf 

dsshsxf)()(

  dsshsxf)()(

f*h =   dsshsxf)()(

2

1

1/3

Basics: Smoothing via local averaging

Graphic depiction Numerical calculation

Formalization

*

 x s f(x-s)h(s) +

-2 -1

0

1

-1 -1

0

1

0 -1

0

1

1 -1

0

1

2 -1

0

1

f

h

f*h

  dsshsxf)()(

Credit: R. Wildes

2

1

1/3

Basics: Smoothing via local averaging

Graphic depiction Numerical calculation

Formalization

*

 x s f(x-s)h(s) +

-2 -1 (1)(1/3)

0 (1)(1/3)

1 (1)(1/3) 1

-1 -1

0

1

0 -1

0

1

1 -1

0

1

2 -1

0

1

f

h

f*h

  dsshsxf)()(

Credit: R. Wildes

h

s = -1 0 1

2

1

1/3

Basics: Smoothing via local averaging

Graphic depiction Numerical calculation

Formalization

*

 x s f(x-s)h(s) +

-2 -1 (1)(1/3)

0 (1)(1/3)

1 (1)(1/3) 1

-1 -1 (3/2)(1/3)

0 (1)(1/3)

1 (1)(1/3) 7.0/6.0

0 -1

0

1

1 -1

0

1

2 -1

0

1

f

h

f*h

  dsshsxf)()(

Credit: R. Wildes

h

s = -1 0 1

2

1

1/3

Basics: Smoothing via local averaging

Graphic depiction Numerical calculation

Formalization

*

 x s f(x-s)h(s) +

-2 -1 (1)(1/3)

0 (1)(1/3)

1 (1)(1/3) 1

-1 -1 (3/2)(1/3)

0 (1)(1/3)

1 (1)(1/3) 7.0/6.0

0 -1 (2)(1/3)

0 (3/2)(1/3)

1 (1)(1/3) 3.0/2.0

1 -1

0

1

2 -1

0

1

f

h

f*h

  dsshsxf)()(

Credit: R. Wildes

h

s = -1 0 1

2

1

1/3

Basics: Smoothing via local averaging

Graphic depiction Numerical calculation

Formalization

*

 x s f(x-s)h(s) +

-2 -1 (1)(1/3)

0 (1)(1/3)

1 (1)(1/3) 1

-1 -1 (3/2)(1/3)

0 (1)(1/3)

1 (1)(1/3) 7.0/6.0

0 -1 (2)(1/3)

0 (3/2)(1/3)

1 (1)(1/3) 3.0/2.0

1 -1 (2)(1/3)

0 (2)(1/3)

1 (3/2)(1/3) 11.0/6.0

2 -1

0

1

f

h

f*h

  dsshsxf)()(

Credit: R. Wildes

h

s = -1 0 1

2

1

1/3

Basics: Smoothing via local averaging

Graphic depiction Numerical calculation

Formalization

*

 x s f(x-s)h(s) +

-2 -1 (1)(1/3)

0 (1)(1/3)

1 (1)(1/3) 1

-1 -1 (3/2)(1/3)

0 (1)(1/3)

1 (1)(1/3) 7.0/6.0

0 -1 (2)(1/3)

0 (3/2)(1/3)

1 (1)(1/3) 3.0/2.0

1 -1 (2)(1/3)

0 (2)(1/3)

1 (3/2)(1/3) 11.0/6.0

2 -1 (2)(1/3)

0 (2)(1/3)

1 (2)(1/3) 2

f

h

f*h

  dsshsxf)()(

Credit: R. Wildes

h

s = -1 0 1

2

1

1/3

Basics: 2D Convolution

Definition

• Consider a system that, given f(x,y) as input, produces output

• We say that g is the convolution of f and h, written as g=f*h.
 








  ddhyxfyxg),(),(),(

Credit: R. Wildes

Basics: Another convolution example

Graphic depiction Numerical calculation

Formalization

*

 x s f(x-s)h(s) +

-2 -1

0

1

-1 -1

0

1

0 -1

0

1

1 -1

0

1

2 -1

0

1

f

h

f*h





 dsshsxf)()(

Credit: R. Wildes

2

1

1

Basics: Another convolution example

Graphic depiction Numerical calculation

Formalization

*

 x s f(x-s)h(s) +

-2 -1 (1)(1)

0 (1)(0)

1 (1)(-1) 0

-1 -1

0

1

0 -1

0

1

1 -1

0

1

2 -1

0

1

f

h

f*h





 dsshsxf)()(

Credit: R. Wildes

2

1

1
h

s = -1 0 1

Basics: Another convolution example

Graphic depiction Numerical calculation

Formalization

*

 x s f(x-s)h(s) +

-2 -1 (1)(1)

0 (1)(0)

1 (1)(-1) 0

-1 -1

0

1

0 -1

0

1

1 -1

0

1

2 -1

0

1

f

h

f*h





 dsshsxf)()(

Credit: R. Wildes

Basics: Another convolution example

Graphic depiction Numerical calculation

Formalization

*

 x s f(x-s)h(s) +

-2 -1 (1)(1)

0 (1)(0)

1 (1)(-1) 0

-1 -1 (3/2)(1)

0 (1)(0)

1 (1)(-1) 1/2

0 -1

0

1

1 -1

0

1

2 -1

0

1

f

h

f*h





 dsshsxf)()(

Credit: R. Wildes

2

1

1
h

Basics: Another convolution example

Graphic depiction Numerical calculation

Formalization

*

 x s f(x-s)h(s) +

-2 -1 (1)(1)

0 (1)(0)

1 (1)(-1) 0

-1 -1 (3/2)(1)

0 (1)(0)

1 (1)(-1) 1/2

0 -1 (2)(1)

0 (3/2)(0)

1 (1)(-1) 1

1 -1

0

1

2 -1

0

1

f

h

f*h





 dsshsxf)()(

Credit: R. Wildes

2

1

1
h

Basics: Another convolution example

Graphic depiction Numerical calculation

Formalization

*

 x s f(x-s)h(s) +

-2 -1 (1)(1)

0 (1)(0)

1 (1)(-1) 0

-1 -1 (3/2)(1)

0 (1)(0)

1 (1)(-1) 1/2

0 -1 (2)(1)

0 (3/2)(0)

1 (1)(-1) 1

1 -1 (2)(1)

0 (2)(0)

1 (3/2)(-1) 1/2

2 -1

0

1

f

h

f*h





 dsshsxf)()(

Credit: R. Wildes

2

1

1
h

Basics: Another convolution example

Graphic depiction Numerical calculation

Formalization

*

 x s f(x-s)h(s) +

-2 -1 (1)(1)

0 (1)(0)

1 (1)(-1) 0

-1 -1 (3/2)(1)

0 (1)(0)

1 (1)(-1) 1/2

0 -1 (2)(1)

0 (3/2)(0)

1 (1)(-1) 1

1 -1 (2)(1)

0 (2)(0)

1 (3/2)(-1) 1/2

2 -1 (2)(1)

0 (2)(0)

1 (2)(-1) 0

f

h

f*h





 dsshsxf)()(

Credit: R. Wildes

2

1

1
h

Basics: Another convolution example

Graphic depiction Numerical calculation

Formalization

*

 x s f(x-s)h(s) +

-2 -1 (1)(1)

0 (1)(0)

1 (1)(-1) 0

-1 -1 (3/2)(1)

0 (1)(0)

1 (1)(-1) 1/2

0 -1 (2)(1)

0 (3/2)(0)

1 (1)(-1) 1

1 -1 (2)(1)

0 (2)(0)

1 (3/2)(-1) 1/2

2 -1 (2)(1)

0 (2)(0)

1 (2)(-1) 0

f

h

f*h





 dsshsxf)()(

Credit: R. Wildes

2

1

1
h

Basics: Convolution

Definition

• Consider a system that, given f(x,y) as input, produces output

• We say that g is the convolution of f and h, written as g=f*h.

Convolution is linear

• Applying the system to (a f1(x,y) + b f2(x,y)) yields (a g1(x,y) + b g2(x,y)).

• Follows from rule for integrating the product of a constant and a function

• and the rule for integrating the sum of two functions.

 







  ddhyxfyxg),(),(),(

   dbdadba  )()()()(

Credit: R. Wildes

Basics: Convolution

Definition

• Consider a system that, given f(x,y) as input, produces output

• We say that g is the convolution of f and h, written as g=f*h.

Convolution is linear

• Applying the system to (a f1(x,y) + b f2(x,y)) yields (a g1(x,y) + b g2(x,y)).

• Follows from rule for integrating the product of a constant and a function

• and the rule for integrating the sum of two functions.

Convolution is shift invariant

• Applying the system to f(x-a,y-b) yields g(x-a,y-b).

• Follows from the convolution integral being independent of (x,y)

• So a change of variables (x,y)(x-a,y-b)=(x’,y’) just shifts the result.

• Another way to think of shift invariance is that the operation (e.g. *) “behaves the same
everywhere”

• For images: The value of the output depends on the pattern in the image neighborhood, not the
position of the neighborhood

 







  ddhyxfyxg),(),(),(

Credit: R. Wildes

Images as functions

• We can think of an image as a function, f, from

R2 to R:
• f(x, y) gives the intensity at position (x, y)

• Realistically, we expect the image only to be defined over a

rectangle, with a finite range:

– f: [a,b] x [c,d]  [0, 1.0]

• A color image is just three functions pasted

together. We can write this as a “vector-valued”

function:
(,)

(,) (,)

(,)

r x y

f x y g x y

b x y

 
 
 
  

Credit: S. Seitz

Digital images

• In computer vision we operate on digital (discrete) images:
• Sample the 2D space on a regular grid

• Quantize each sample (round to nearest integer)

• Image thus represented as a matrix of integer values.

Credit: S. Seitz

2D

1D

Image filtering

• Modify the pixels in an image based on some function of a local neighborhood of each pixel

5 14

1 71

5 310

Local image data

7

Modified image data

Some function

Credit: L. Zhang

Linear filtering

• One simple version: linear filtering
(cross-correlation, convolution)

– Replace each pixel by a linear combination (a weighted
sum) of its neighbors

• The prescription for the linear combination is called
the “kernel” (or “mask”, “filter”)

0.5

0.5 00

10

0 00

kernel

8

Modified image data

Credit: L. Zhang

Local image data

6 14

1 81

5 310

Convolution: The 2D case

Numerical calculation: Smoothing via local averaging

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111

111

111

h

gf

Credit: S. Seitz

 
lk

lkhlykxfyxg
,

),(),(),(

Convolution: The 2D case

Numerical calculation: Smoothing via local averaging

 
lk

lkhlykxfyxg
,

),(),(),(

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111

111

111

h

gf

Credit: S. Seitz

Convolution: The 2D case

Numerical calculation: Smoothing via local averaging

 
lk

lkhlykxfyxg
,

),(),(),(

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111

111

111

h

gf

Credit: S. Seitz

Convolution: The 2D case

Numerical calculation: Smoothing via local averaging

 
lk

lkhlykxfyxg
,

),(),(),(

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111

111

111

h

gf

Credit: S. Seitz

Convolution: The 2D case

Numerical calculation: Smoothing via local averaging

 
lk

lkhlykxfyxg
,

),(),(),(

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111

111

111

h

gf

Credit: S. Seitz

Convolution: The 2D case

Numerical calculation: Smoothing via local averaging

 
lk

lkhlykxfyxg
,

),(),(),(

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111

111

111

h

gf

Credit: S. Seitz

Convolution: The 2D case

Numerical calculation: Smoothing via local averaging

 
lk

lkhlykxfyxg
,

),(),(),(

0 10 20 30 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111

111

111

h

gf

Credit: S. Seitz

Convolution: The 2D case

Numerical calculation: Smoothing via local averaging

 
lk

lkhlykxfyxg
,

),(),(),(

0 10 20 30 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111

111

111

h

gf

?

Credit: S. Seitz

Convolution: The 2D case

Numerical calculation: Smoothing via local averaging

 
lk

lkhlykxfyxg
,

),(),(),(

0 10 20 30 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111

111

111

h

gf
50

Credit: S. Seitz

Convolution: The 2D case

Numerical calculation: Smoothing via local averaging

 
lk

lkhlykxfyxg
,

),(),(),(

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111

111

111

h

gf

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

Credit: S. Seitz

Convolution vs. correlation

Let f be the image and g be the kernel, the cross-correlation operation is defined as

Note: We have defined convolution as g=f*h

For a symmetric kernel, how will the outputs differ?

If the input is an impulse signal, how will the outputs differ?

 
lk

lkhlykxfyxg
,

),(),(),(

 
lk

lkhlykxfyxg
,

),(),(),(

f
Filter kernel is “flipped”in both dimensions (bottom to top, right to left)

Then cross-correlation is applied

f

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

What is the result of filtering the impulse signal (image) F
with the arbitrary kernel H?

?

Credit: K. Grauman

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

0 0 0 0 0 0 0

0 0 0 0 0

What is the result of filtering the impulse signal (image) F
with the arbitrary kernel H?

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0

What is the result of filtering the impulse signal (image) F
with the arbitrary kernel H?

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 i

What is the result of filtering the impulse signal (image) F
with the arbitrary kernel H?

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 i h

What is the result of filtering the impulse signal (image) F
with the arbitrary kernel H?

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 i h g 0 0

0 0 f e

What is the result of filtering the impulse signal (image) F
with the arbitrary kernel H?

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 i h g 0 0

0 0 f e d 0 0

0 0 c b a

What is the result of filtering the impulse signal (image) F
with the arbitrary kernel H?

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 i h g 0 0

0 0 f e d 0 0

0 0 c b a 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

What is the result of filtering the impulse signal (image) F
with the arbitrary kernel H?

Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

i h g

f e d

c b a

What is the result of filtering the impulse signal (image) F
with the arbitrary kernel H?

Filter output is reversed.

Convolution

• Convolution:
– Flip the filter in both dimensions (bottom to top, right to left)

– Then apply cross-correlation

Notation for
convolution
operator

F

H

Credit: K. Grauman

Practice with linear filters

000

010

000

Original

?

Credit: D. Lowe

Practice with linear filters

000

010

000

Original Filtered

(no change)

Credit: D. Lowe

Practice with linear filters

000

100

000

Original

?

Credit: D. Lowe

Practice with linear filters

000

100

000

Original Shifted left

By 1 pixel

Credit: D. Lowe

Practice with linear filters

Original

111

111

111

000

020

000

- ?

(Note that filter sums to 1)

Credit: D. Lowe

Practice with linear filters

Original

111

111

111

000

020

000

-

Sharpening filter

- Accentuates differences with local

average

Credit: K. Grauman

Sharpening

original

0

2.0

0

0.33

Sharpened

original

Slide credit: Bill Freeman

Sharpening example

co
ef

fi
ci

en
t

-0.3
original

8

Sharpened

(differences are

accentuated; constant

areas are left untouched).

11.2
1.7

-0.25

8

Slide credit: Bill Freeman

Sharpening

Credit: D. Lowe

Other filters

-101

-202

-101

Vertical Edge

(absolute value)

Sobel

Credit: D. Lowe

Other filters

-1-2-1

000

121

Horizontal Edge

(absolute value)

Sobel

Credit: D. Lowe

Border treatment

• What about near the edge?

– the filter window falls off the edge of the image

– need to extrapolate

– methods:

• clip filter (black)

• wrap around

• copy edge

• reflect across edge

Credit: S. Marschner

Border treatment

• What is the size of the output?

– shape = ‘full’: output size is sum of sizes of f and g

– shape = ‘same’: output size is same as f

– shape = ‘valid’: output size is difference of sizes of f and g

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

Credit: S. Lazebnik

Smoothing by averaging

depicts box filter:
white = high value, black = low value

original filtered

Credit: D. Forsyth

Important filter: Gaussian

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

• What if we want nearest neighboring pixels to have the
most influence on the output?

This kernel is an
approximation of a
Gaussian function:

Credit: S. Seitz

• Weight contributions of neighboring pixels by nearness

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5 x 5,  = 1

Important filter: Gaussian

Credit: C. Rasmussen

Important filter: Gaussian

• Gaussian filters have some interesting properties

• Common in many natural models

• Smooth and symmetric function it has an infinite number of derivatives

• Fourier Transform of Gaussian is Gaussian (see later)

• Convolution of a Gaussian with itself is a Gaussian

• Gaussian is separable (e.g. 2D convolution can be performed by two 1-D convolutions)

• There is evidence that the human visual system performs Gaussian filtering

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5 x 5,  = 1

Smoothing with a Gaussian

Credit: D. Forsyth

•Remove “high-frequency” components from the image (low-pass filter)
Images become more smooth

Gaussian filters

• What parameters matter here?

• Size of kernel or mask

– Note, Gaussian function has infinite support, but discrete filters
use finite kernels

σ = 5 with 10
x 10 kernel

σ = 5 with 30
x 30 kernel

Credit: K. Grauman

Gaussian filters

• What parameters matter here?

• Variance of Gaussian: determines extent of
smoothing

• Rule of thumb: filter width of about 6σ

σ = 2 with 30
x 30 kernel

σ = 5 with 30
x 30 kernel

Credit: K. Grauman

Basics: More facts about convolution

Convolution is commutative

• That is f*h = h*f

• Interchange of h and f possible

• Order does not care

Convolution is associative

• That is (f*h1)*h2 = f*(h1*h2)

• Can be exploited for efficient implementations

f gh

gh f

f h1 h2 g

f h1*h2 g

Credit: R. Wildes

Gaussian filters

Note: Convolution is associative: (f*g)*h = f*(g*h)

• Can be exploited for multi-scale processing and efficiency:

– Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel
of width σ√2

– Efficiency: multiple smoothing with small-width kernel delivers same result as larger-width
kernel

Credit: I. Kokkinos

Gaussian filters: Separability

Note: Convolution is associative: (f*g)*h = f*(g*h)

• Can be further exploited for efficiency:

– Separable kernel factors into product of two 1D Gaussians

– Efficiency: multiple smoothing with 1D filter delivers same result as with high dimensional
filter

Credit: I. Kokkinos

Separability of the Gaussian filter for 2D

Credit: D. Lowe

Separability: Numeric example for 2D

• 2D filters are separable if they can be expressed as the outer product of
two vectors. For example:

Note: Convolution is associative: (f*g)*h = f*(g*h)

g

h

f

Credit: K. Grauman

For MN image, PQ filter: 2D takes MNPQ add/times,

while 1D takes MN(P + Q)

More important filters: Edges/gradients and invariance

Credit: K. Grauman

• Motivation: We want to represent distinctive parts of an image

Derivatives and edges

image
intensity function

(along horizontal scanline) first derivative

edges correspond to

extrema of derivative

An edge is a place of rapid change in the

image intensity function.

Credit: L. Lazebnik

More important filters: Derivative of Gaussian

 11  
0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133
0.0219 0.0983 0.1621 0.0983 0.0219
0.0133 0.0596 0.0983 0.0596 0.0133
0.0030 0.0133 0.0219 0.0133 0.0030

)()(hgIhgI 

Credit: K. Grauman

More important filters: Derivative of Gaussian

x-direction y-direction

Credit: L. Lazebnik

Gaussian filters: Steerability

Credit: I. Kokkinos

Steerable filter:

More important filters: Derivative(s) of Gaussian

• is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

Credit: K. Grauman

The Fourier transform

Further reading: Szeliski, Richard. Computer Vision: Algorithms and
Applications. Springer, 2010, Chapter 3, Section 3.4

Linear image transformations

• In analyzing images, it’s often useful to make a change of basis.

Fourier transform, or

Wavelet transform, or

Steerable pyramid transform

fUF


 Vectorized image

transformed image

Credit: B. Freeman

Canonical basis for 2D signals

Kronecker delta

Credit: I. Kokkinos

Fourier Transform = Change of Basis

Credit: I. Kokkinos

Self-inverting transforms

FU

FUf












1

Same basis functions are used for the inverse transform

U transpose and complex conjugate

Credit: B. Freeman

Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):
Any univariate function can be
rewritten as a weighted sum of
sines and cosines of different
frequencies.

• Don’t believe it?

– Neither did Lagrange,
Laplace, Poisson and
others

– Not translated into
English until 1878!

• But it’s true!

– called Fourier Series

...the manner in which the author arrives at these
equations is not exempt of difficulties and...his

analysis to integrate them still leaves something to be
desired on the score of generality and even rigour.

Laplace

Lagrange
Legendre

Credit: J. Hays

Fourier Transform

Our building block:

Add enough of them to get
any signal g(x) you want!

The Fourier transform F(w)
stores the magnitude and
phase at each frequency

Magnitude encodes how
much signal there is at a
particular frequency

Phase encodes spatial
information (indirectly)

fwxAsin(

Credit: J. Hays

f

A

w

Fourier Transform

•We want to understand the frequency w of our signal. So, let’s
reparametrize the signal by w instead of x:

fwxAsin(

f(x) F(w)Fourier

Transform

F(w) f(x)Inverse Fourier

Transform

For every w from 0 to inf, F(w) holds the amplitude A

and phase f of the corresponding sine
• How can F hold both? Complex number trick!

)()()(www iIRF 
22)()(ww IRA 

)(

)(
tan 1

w

w
f

R

I

We can always go back:

Credit: A. Efros

Frequency Spectra

• example : g(t) = sin(2πf t) + (1/3)sin(2π(3f) t)

= +

Credit: A. Efros

Frequency Spectra

Credit: J. Hays

= +

=

Frequency Spectra

Credit: J. Hays

= +

=

Frequency Spectra

Credit: J. Hays

= +

=

Frequency Spectra

Credit: J. Hays

= +

=

Frequency Spectra

Credit: J. Hays

= +

=

Frequency Spectra

Credit: J. Hays

=
1

1
sin(2)

k

A kt
k








Frequency Spectra

Credit: J. Hays

Basics: The Fourier transform

Eigenfunctions

• An eigenfunction of a system is one that is simply multiplied by another factor in the output.

• We think of this as analogous to the case of eigenvectors from linear algebra.

f(w) A(w) f(w)

Credit: R. Wildes

Basics: The Fourier transform

Eigenfunctions

• An eigenfunction of a system is one that is simply multiplied by another factor in the output.

• We think of this as analogous to the case of eigenvectors from linear algebra.

Remark

• Notation

with the imaginary number

f(w) A(w) f(w)

)exp(iwteiwt 

1i

Credit: R. Wildes

Basics: The Fourier transform

Eigenfunctions

• An eigenfunction of a system is one that is simply multiplied by another factor in the output.

• We think of this as analogous to the case of eigenvectors from linear algebra.

• For the case of 1D Linear Shift Invariant (LSI) systems we find that exp(iwt) is an eigenfunction of
convolution.

• Here A(w) is the (possibly complex) factor by which the input signal is multiplied.

• So, from the input exponential we obtain another exponential; but, scaled and shifted in phase.

f(w) A(w) f(w)

exp(iwt) A(w) exp(iwt)

Credit: R. Wildes

Basics: The Fourier transform

Eigenfunctions

• An eigenfunction of a system is one that is simply multiplied by another factor in the output.

• We think of this as analogous to the case of eigenvectors from linear algebra.

• For the case of 1D LSI systems we find that exp(iwt) is an eigenfunction of convolution.

• Here A(w) is the (possibly complex) factor by which the input signal is multiplied.

• So, from the input exponential we obtain another exponential; but, scaled and shifted in phase.

Frequency

• We call w the frequency (or wave number) of the eigenfunction.

• In practice, we use real waveforms, like cos(wt) and sin(wt), with the relationship

exp(iwt)=cos(wt) + i sin(wt)

which is known as Euler’s relation.

• The complex exponential is used in derivations simply because it provides a compact notation.

f(w) A(w) f(w)

exp(iwt) A(w) exp(iwt)

Credit: R. Wildes

Basics: The Fourier transform

1D frequency
• We consider functions of the form

f(x) = Acos(ux + d)

where

A is the amplitude

u is the (angular) frequency

d is the phase constant.

• Notice that the function repeats its value
when ux + d increases by .

• For example, when d = 0, the maxima and
minima occur when , for k an integer.kux 

x

f(x)

A

d/u

u/2

2

Credit: R. Wildes

115

Fourier transform: 1D case

Consider

• A graphical interpretation

)(

6cos
3

2

4cos

2cos
2

1

1

xf

x

x

x















+

+

+

=

x

x

x

x

x

Credit: R. Wildes

Consider

• A graphical interpretation

)(

6cos
3

2

4cos

2cos
2

1

1

xf

x

x

x















+

+

+

=

x

x

x

x

x

Fourier transform: 1D case

Credit: R. Wildes

Fourier transform: 1D case

Consider

• A graphical interpretation

)(

6cos
3

2

4cos

2cos
2

1

1

xf

x

x

x















+

+

+

=

x

x

x

x

x

Credit: R. Wildes

Fourier transform: 1D case

Consider

• A graphical interpretation

)(

6cos
3

2

4cos

2cos
2

1

1

xf

x

x

x















+

+

+

x

x

x

x

x

=

=

Credit: R. Wildes

Fourier transform: 1D case

Consider
• A graphical interpretation

Observation
• Complicated signals can be represented as

the sum of simple components.

)(

6cos
3

2

4cos

2cos
2

1

1

xf

x

x

x















+

+

+

x

x

x

x

x

=

Credit: R. Wildes

Fourier transform: 1D case

+

+

+

x

x

x

x

x

=

u

u

u

u

u

f(x)

+

+

+

=









6;cos
3

2
6cos

3

2

4;cos14cos

2;cos
2

1
2cos

2

1

0;cos10cos1









uuxx

uuxx

uuxx

uuxx

Credit: R. Wildes

Fourier transform: 1D case

+

+

+

x

x

x

x

x

=

u

u

u

u

u

f(x)

+

+

+

=









6;cos
3

2
6cos

3

2

4;cos14cos

2;cos
2

1
2cos

2

1

0;cos10cos1









uuxx

uuxx

uuxx

uuxx

Note
• By symmetry, we may choose

to represent this as u
Credit: R. Wildes

The Fourier transform of an image

Source image (J. Fourier) Fourier power spectrum

Credit: R. Wildes

Basics: The 2D Fourier transform

2D Eigenfunctions

• For the case of 1D LSI systems we found that exp(iwt) is an eigenfunction of
convolution.

• One can show that that exp[i(ux+vy)] is an eigenfunction in 2D.

• The 2D Fourier transform F(u,v) of f(x,y) is given by

exp[i(ux+vy)] A(u,v) exp[i(ux+vy)]

Credit: R. Wildes

exp(iwt) A(w) exp(iwt)

 







 dxdyvyuxiyxfvuF)](exp[),(),(

The 2D discrete Fourier transform

Discrete domain, Image of height M and width N

 



















1

0

1

0

],[
1

],[
M

x

N

y

N

yv

M

xu
i

evuF
MN

yxf


Inverse transform

 



















1

0

1

0

],[],[
M

x

N

y

N

vy

M

ux
i

eyxfvuF


Forward transform

Source image],[vuFFourier spectrum],[yxf],[vufFourier phase

],[],[],[vuievuFvuF f

Basics: The Fourier transform

2D frequency

• For two spatial dimensions, we see that
there are two corresponding frequency

components, u and v.

• We refer to the uv-plane as the frequency
domain.

• We refer to the xy-plane as the spatial
domain.

• The real waveforms cos(ux+vy) and

sin(ux+vy) correspond to waves in 2D.

y

x

The maxima and minima

of the cosinusoids lie

along parallel equidistant

lines for k

an integer.

kvyux 

(u,v)=(a,0)

Credit: R. Wildes

Cross sections orthogonal to

the ridges show a sinusoidal

profile

],[yxf

y

Basics: The Fourier transform

2D frequency

• For two spatial dimensions, we see that
there are two corresponding frequency

components, u and v.

• We refer to the uv-plane as the frequency
domain.

• We refer to the xy-plane as the spatial
domain.

• The real waveforms cos(ux+vy) and

sin(ux+vy) correspond to waves in 2D.

y

Cross sections orthogonal to

the ridges show a sinusoidal

profile

x

The maxima and minima

of the cosinusoids lie

along parallel equidistant

lines for k

an integer.

kvyux 

(u,v)=(0,a)

Credit: R. Wildes

],[yxf

y

Basics: The Fourier transform

2D frequency

• For two spatial dimensions, we see that
there are two corresponding frequency

components, u and v.

• We refer to the uv-plane as the frequency
domain.

• We refer to the xy-plane as the spatial
domain.

• The real waveforms cos(ux+vy) and

sin(ux+vy) correspond to waves in 2D.

y

x

The maxima and minima

of the cosinusoids lie

along parallel equidistant

lines for k

an integer.

kvyux 

Credit: R. Wildes

Cross sections orthogonal to

the ridges show a sinusoidal

profile

(u,v)/|(u,v)|

],[yxf

The Fourier transform: 2D case

A 2D example

• Recall the 1D example

x

f(x) F(u)

u

for the cosine component

Credit: R. Wildes

The Fourier transform: 2D case

A 2D example

• Recall the 1D example

• And the interpretation of 2D spatial frequency

x

y

The maxima and minima

of the cosinusoids lie

along parallel equidistant

lines for k

an integer.

kvyux 

x

f(x) F(u)F(u)

u

for the cosine component

Credit: R. Wildes

(u,v)/|(u,v)|

],[yxf

The Fourier transform: 2D case

A 2D example

• Recall the 1D example

• Then a 2D analogue could be

x

y

x

f(x) F(u)F(u)

u

for the cosine component

Credit: R. Wildes

],[yxf

The Fourier transform: 2D case

A 2D example

• Recall the 1D example

• Then a 2D analogue could be

x

y

x

f(x) F(u)

v

u

F(u)

u

for the cosine component

Credit: R. Wildes

],[vuF],[yxf

To get some sense of what

basis elements look like, we

plot a basis element --- or

rather, its real part ---

as a function of x,y for some

fixed u, v. We get a function

that is constant when (ux+vy)

is constant. The magnitude of

the vector (u, v) gives a

frequency, and its direction

gives an orientation. The

function is a sinusoid with

this frequency along the

direction, and constant

perpendicular to the

direction.

u

v

 vyuxie 

 vyuxie 

Credit: B. Freeman

Here u and v

are larger than

in the previous

slide.

u

v
 vyuxie 

 vyuxie 

Credit: B. Freeman

And larger still...

u

v

 vyuxie 

 vyuxie 

Credit: B. Freeman

The Fourier transform: Filtering

Intensity Image

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering

The Fourier transform: Filtering

+ =

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering

More: http://www.cs.unm.edu/~brayer/vision/fourier.html

Understanding the Fourier transform of an image

Source image (J. Fourier) Fourier power spectrum

Credit: K. Derpanis

Phase and Magnitude

• Fourier transform of a real
function is complex
– difficult to plot, visualize

– instead, we can think of the
phase and magnitude of the
transform

• Phase is the phase of the
complex transform

• Magnitude is the magnitude
of the complex transform

• Curious fact
– all natural images have about

the same magnitude
transform

– hence, phase seems to
matter, but magnitude largely
doesn’t

• Demonstration
– Take two pictures, swap the

phase transforms, compute
the inverse - what does the
result look like?

Credit: B. Freeman

Credit: B. Freeman

This is the

magnitude

transform

of the

cheetah pic

Credit: B. Freeman

This is the

phase

transform

of the

cheetah pic

Credit: B. Freeman

Credit: B. Freeman

This is the

magnitude

transform

of the zebra

pic

Credit: B. Freeman

This is the

phase

transform

of the zebra

pic

Credit: B. Freeman

Reconstruction

with zebra

phase, cheetah

magnitude

Credit: B. Freeman

Reconstruction

with cheetah

phase, zebra

magnitude

Credit: B. Freeman

Extension to 3D

Credit: K. Derpanis

Filtering in spatial domain
-101

-202

-101

* =

Credit: J. Hays

The Convolution Theorem

• The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

• Convolution in spatial domain is equivalent to
multiplication in frequency domain!

]F[]F[]F[hghg 

]]F[][F[F* 1 hghg 

Credit: J. Hays

Filtering in frequency domain

FFT

FFT

Inverse FFT

=

Credit: D. Hoiem

Fast Fourier Transform (FFT) = fast implementation

Gaussian

Credit: D. Hoiem

Why does the Gaussian give a nice smooth image, but the
square filter give edgy artifacts?

Box Filter

Credit: D. Hoiem

Why does the Gaussian give a nice smooth image, but the
square filter give edgy artifacts?

Low pass filtering
http://www.reindeergraphics.com

Credit: R. Fergus

High pass filtering
http://www.reindeergraphics.com

Credit: R. Fergus

Low-pass, Band-pass, High-pass filters

low-pass:

High-pass / band-pass:

Credit: A. Efros

Why is the Frequency domain useful for us?

• The linear convolution operation can be understood from a different angle

• It can be performed very efficient using a clever implementation (FFT)

• The Frequency domain provides an alternative way to understand and manipulate the
content of images

Match the spatial domain image to the Fourier
magnitude image

Credit: K. Derpanis

Spatial Domain

Basis functions:

…
…

…
…

..

Tells you where things are….

… but no concept of what it is

Credit: R. Fergus

Fourier domain

Basis functions:

Tells you what is in the image….

… but not where it is

…
…

…
…

…
…

Credit: R. Fergus

Modulation property and Gabor filters

Credit: I. Kokkinos

Modulation property and Gabor filters

Credit: I. Kokkinos

2D Gabor filterbank and texture analysis

Credit: I. Kokkinos

2D Gabor filterbank and texture analysis

Credit: I. Kokkinos

2D Gabor filterbank and texture analysis

Credit: I. Kokkinos

Summary: Images as a composition of local parts
Filtering example

• Why filtering?

– Statistics of images look similar at
different locations

– Dependencies are very local

– Filtering is an opteration with
translation equivariance

Input Feature Map

.

.

.

Credit: R. Fergus

Image
Pixels Apply

Gabor filters

Spatial pool

(Sum)

Normalize to unit
length

Feature
Vector

Credit: R. Fergus

Summary: Compare: SIFT Descriptor

Summary

• Linear filtering and the importance of convolution

– Apply a filtermask to the local neighborhood at each pixel in the image

– The filtermask defines how to combine values from neighbors.

– Can be used for

• Extract intermediate representations to abstract images by higher-level
“features”, for further processing (i.e., preserve the useful information only
and discard redundancy)

• Image modification, e.g., to reduce noise, resize, increase contrast, etc.

• Match template images (e.g. by correlating two image patches)

• Image filtering in the frequency domain

– Provides a nice way to illustrate the effect of linear filtering

• Filtering is a way to modify the frequencies of images

– Efficient signal filtering is possible in that domain

– The frequency domain offers an alternative way to understanding and
manipulating the image.

