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Outline

• Linear filtering and the importance of convolution

– Apply a filtermask to the local neighborhood at each pixel in the image

– The filtermask defines how to combine values from neighbors.

– Can be used for

• Extract intermediate representations to abstract images by higher-level 
“features”, for further processing (i.e., preserve the useful information only 
and discard redundancy)

• Image modification, e.g., to reduce noise, resize, increase contrast, etc.

• Match template images (e.g. by correlating two image patches)

• Image filtering in the frequency domain

– Provides a nice way to illustrate the effect of linear filtering

• Filtering is a way to modify the frequencies of images

– Efficient signal filtering is possible in that domain

– The frequency domain offers an alternative way to understanding and 
manipulating the image.



Motivation: Images as a composition of local parts
“Pixel-based” representation

Credit: M. A. Ranzato

Too many parameters!



Motivation: Images as a composition of local parts
“Patch-based” representation

Credit: M. A. Ranzato



Motivation: Images as a composition of local parts
Sparse coding example

Natural Images Learned bases (f1 , …, f64):  “Edges”
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 0.8 *                   + 0.3 *                     + 0.5 *

x  0.8 *    f
36

+  0.3 *       f42 + 0.5 *       f63

[a1, …, a64] = [0, 0, …, 0, 0.8, 0, …, 0, 0.3, 0, …, 0, 0.5, 0] 
(feature representation) 

Test example

Credit: A. Coates



Natural Images Learned bases (f1 , …, f64):  “Edges”
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Test example

• Method “invents” edge detection 

• Automatically learns to represent an image in terms of the edges that appear in it

• Gives a more succinct, higher-level representation than the raw pixels 

• Quantitatively similar to primary visual cortex (area V1) in brain 
Credit: A. Coates

Motivation: Images as a composition of local parts
Sparse coding example



Credit: M. A. Ranzato

Motivation: Images as a composition of local parts
“Patch-based” representation

Still too many parameters!



Credit: M. A. Ranzato

Motivation: Images as a composition of local parts
Convolution example



Credit: M. A. Ranzato

Motivation: Images as a composition of local parts
Convolution example



Motivation: Images as a composition of local parts
Convolution example

• Why convolution?

– Statistics of images look similar at
different locations

– Dependencies are very local 

– Filtering is an opteration with 
translation equivariance

Input Feature Map

.

.

.

Credit: R. Fergus



Motivation: Images as a composition of local parts
Filtering example

Credit: R. Fergus

• Why translation equivariance?

• Input translation leads to a translation of features

– Fewer filters needed: no translated replications

– But still need to cover orientation/frequency

Patch-based Convolutional

Patch-based



Linear filtering

Further reading: Szeliski, Richard. Computer Vision: Algorithms and
Applications. Springer, 2010, Chapter 3, Section 3.2



Basics: Smoothing via local averaging

Graphic depiction
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Basics: Smoothing via local averaging

Graphic depiction
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another function:
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Basics: Smoothing via local averaging

Graphic depiction
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• We begin by considering a function: 

• And we multiply it with values of 
another function:

• But we do this at various offsets:

• and multiply by infinitesimal support 
elements:
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Basics: Smoothing via local averaging

Graphic depiction
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• We begin by considering a function: 

• And we multiply it with values of 
another function:

• But we do this at various offsets:

• and multiply by infinitesimal support 
elements:

• Finally, we sum up (integrate): 
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Basics: Smoothing via local averaging

Graphic depiction

• We call this operation * a convolution

*
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• And we multiply it with values of 
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• But we do this at various offsets:

• and multiply by infinitesimal support 
elements:

• Finally, we sum up (integrate): 
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Basics: Smoothing via local averaging 

Graphic depiction                                                                 Numerical calculation

Formalization
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Basics: 2D Convolution

Definition

• Consider a system that, given f(x,y) as input, produces output

• We say that g is the convolution of f and h, written as g=f*h.
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Basics: Another convolution example
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Basics: Convolution

Definition

• Consider a system that, given f(x,y) as input, produces output

• We say that g is the convolution of f and h, written as g=f*h.

Convolution is linear

• Applying the system to (a f1(x,y) + b f2(x,y)) yields (a g1(x,y) + b g2(x,y)).

• Follows from rule for integrating the product of a constant and a function

• and the rule for integrating the sum of two functions.
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Basics: Convolution

Definition

• Consider a system that, given f(x,y) as input, produces output

• We say that g is the convolution of f and h, written as g=f*h.

Convolution is linear

• Applying the system to (a f1(x,y) + b f2(x,y)) yields (a g1(x,y) + b g2(x,y)).

• Follows from rule for integrating the product of a constant and a function

• and the rule for integrating the sum of two functions.

Convolution is shift invariant

• Applying the system to f(x-a,y-b) yields g(x-a,y-b).

• Follows from the convolution integral being independent of (x,y)

• So a change of variables (x,y)(x-a,y-b)=(x’,y’) just shifts the result.

• Another way to think of shift invariance is that the operation (e.g. *) “behaves the same 
everywhere”

• For images: The value of the output depends on the pattern in the image neighborhood, not the 
position of the neighborhood
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Images as functions

• We can think of an image as a function, f, from 

R2 to R:
• f( x, y ) gives the intensity at position ( x, y ) 

• Realistically, we expect the image only to be defined over a 

rectangle, with a finite range:

– f: [a,b] x [c,d]  [0, 1.0]

• A color image is just three functions pasted 

together.  We can write this as a “vector-valued” 

function: 
( , )

( , ) ( , )

( , )

r x y

f x y g x y

b x y

 
 
 
  

Credit: S. Seitz



Digital images

• In computer vision we operate on digital (discrete) images:
• Sample the 2D space on a regular grid

• Quantize each sample (round to nearest integer)

• Image thus represented as a matrix of integer values.

Credit: S. Seitz
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Image filtering

• Modify the pixels in an image based on some function of a local neighborhood of each pixel
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Linear filtering

• One simple version:  linear filtering 
(cross-correlation, convolution)

– Replace each pixel by a linear combination (a weighted 
sum) of its neighbors

• The prescription for the linear combination is called 
the “kernel” (or “mask”, “filter”)
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Convolution: The 2D case

Numerical calculation: Smoothing via local averaging
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Numerical calculation: Smoothing via local averaging
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Convolution: The 2D case

Numerical calculation: Smoothing via local averaging
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Convolution: The 2D case

Numerical calculation: Smoothing via local averaging
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Convolution: The 2D case

Numerical calculation: Smoothing via local averaging
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Convolution: The 2D case

Numerical calculation: Smoothing via local averaging

 
lk

lkhlykxfyxg
,

),(),(),(

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111

111

111

h

gf

Credit: S. Seitz



Convolution: The 2D case
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Convolution: The 2D case

Numerical calculation: Smoothing via local averaging
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Convolution: The 2D case

Numerical calculation: Smoothing via local averaging
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Credit: S. Seitz



Convolution: The 2D case

Numerical calculation: Smoothing via local averaging
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Credit: S. Seitz



Convolution vs. correlation

Let f be the image and g be the kernel, the cross-correlation operation    is defined as

Note: We have defined convolution as g=f*h

For a symmetric kernel, how will the outputs differ?

If the input is an impulse signal, how will the outputs differ?

 
lk

lkhlykxfyxg
,

),(),(),(

 
lk

lkhlykxfyxg
,

),(),(),(

f
Filter kernel is “flipped”in both dimensions (bottom to top, right to left)

Then cross-correlation is applied

f



Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

What is the result of filtering the impulse signal (image) F 
with the arbitrary kernel H?

?

Credit: K. Grauman



Filtering an impulse signal
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0 0 0 0 0 0 0

0 0 0 0 0

What is the result of filtering the impulse signal (image) F 
with the arbitrary kernel H?



Filtering an impulse signal

0 0 0 0 0 0 0
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0 0

What is the result of filtering the impulse signal (image) F 
with the arbitrary kernel H?



Filtering an impulse signal

0 0 0 0 0 0 0
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What is the result of filtering the impulse signal (image) F 
with the arbitrary kernel H?



Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0
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a b c

d e f
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0 0 0 0 0 0 0

0 0 i h

What is the result of filtering the impulse signal (image) F 
with the arbitrary kernel H?



Filtering an impulse signal

0 0 0 0 0 0 0
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d e f
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0 0 0 0 0 0 0
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What is the result of filtering the impulse signal (image) F 
with the arbitrary kernel H?



Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0
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What is the result of filtering the impulse signal (image) F 
with the arbitrary kernel H?



Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

0 0 0 0 0 0 0
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0 0 f e d 0 0

0 0 c b a 0 0
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What is the result of filtering the impulse signal (image) F 
with the arbitrary kernel H?



Filtering an impulse signal

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a b c

d e f

g h i

i h g

f e d

c b a

What is the result of filtering the impulse signal (image) F 
with the arbitrary kernel H?

Filter output is reversed.



Convolution

• Convolution: 
– Flip the filter in both dimensions (bottom to top, right to left)

– Then apply cross-correlation

Notation for 
convolution 
operator

F

H

Credit: K. Grauman



Practice with linear filters

000

010

000

Original

?

Credit: D. Lowe



Practice with linear filters

000

010

000

Original Filtered 

(no change)

Credit: D. Lowe



Practice with linear filters

000

100

000

Original

?

Credit: D. Lowe



Practice with linear filters

000

100

000

Original Shifted left

By 1 pixel

Credit: D. Lowe



Practice with linear filters

Original

111

111

111

000

020

000

- ?

(Note that filter sums to 1)

Credit: D. Lowe



Practice with linear filters

Original

111

111

111

000

020

000

-

Sharpening filter

- Accentuates differences with local 

average

Credit: K. Grauman



Sharpening 

original

0

2.0

0

0.33

Sharpened 

original

Slide credit: Bill Freeman



Sharpening example

co
ef

fi
ci

en
t

-0.3
original

8

Sharpened

(differences are

accentuated;  constant

areas are left untouched).

11.2
1.7

-0.25

8

Slide credit: Bill Freeman



Sharpening

Credit: D. Lowe



Other filters

-101

-202

-101

Vertical Edge

(absolute value)

Sobel

Credit: D. Lowe



Other filters

-1-2-1

000

121

Horizontal Edge

(absolute value)

Sobel

Credit: D. Lowe



Border treatment

• What about near the edge?

– the filter window falls off the edge of the image

– need to extrapolate

– methods:

• clip filter (black)

• wrap around

• copy edge

• reflect across edge

Credit: S. Marschner



Border treatment

• What is the size of the output?

– shape = ‘full’: output size is sum of sizes of f and g

– shape = ‘same’: output size is same as f

– shape = ‘valid’: output size is difference of sizes of f and g 

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

Credit: S. Lazebnik



Smoothing by averaging

depicts box filter: 
white = high value, black = low value

original filtered

Credit: D. Forsyth



Important filter: Gaussian

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

• What if we want nearest neighboring pixels to have the 
most influence on the output?

This kernel is an 
approximation of a 
Gaussian function:

Credit: S. Seitz



• Weight contributions of neighboring pixels by nearness

0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.003

5 x 5,  = 1

Important filter: Gaussian

Credit: C. Rasmussen 



Important filter: Gaussian

• Gaussian filters have some interesting properties

• Common in many natural models 

• Smooth and symmetric function  it has an infinite number of derivatives 

• Fourier Transform of Gaussian is Gaussian (see later)

• Convolution of a Gaussian with itself is a Gaussian 

• Gaussian is separable (e.g. 2D convolution can be performed by two 1-D convolutions) 

• There is evidence that the human visual system performs Gaussian filtering

0.003   0.013   0.022   0.013   0.003
0.013   0.059   0.097   0.059   0.013
0.022   0.097   0.159   0.097   0.022
0.013   0.059   0.097   0.059   0.013
0.003   0.013   0.022   0.013   0.003

5 x 5,  = 1



Smoothing with a Gaussian

Credit: D. Forsyth

•Remove “high-frequency” components from the image (low-pass filter)
Images become more smooth



Gaussian filters

• What parameters matter here?

• Size of kernel or mask

– Note, Gaussian function has infinite support, but discrete filters 
use finite kernels

σ = 5 with 10 
x 10 kernel

σ = 5 with 30 
x 30 kernel

Credit: K. Grauman



Gaussian filters

• What parameters matter here?

• Variance of Gaussian: determines extent of 
smoothing

• Rule of thumb: filter width of about 6σ

σ = 2 with 30 
x 30 kernel

σ = 5 with 30 
x 30 kernel

Credit: K. Grauman



Basics: More facts about convolution

Convolution is commutative 

• That is f*h = h*f

• Interchange of h and f possible

• Order does not care 

Convolution is associative

• That is (f*h1)*h2 = f*(h1*h2)

• Can be exploited for efficient implementations

f gh

gh f

f h1 h2 g

f h1*h2 g

Credit: R. Wildes



Gaussian filters

Note: Convolution is associative: (f*g)*h = f*(g*h)

• Can be exploited for multi-scale processing and efficiency:

– Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel 
of width  σ√2 

– Efficiency: multiple smoothing with small-width kernel delivers same result as larger-width 
kernel

Credit: I. Kokkinos 



Gaussian filters: Separability

Note: Convolution is associative: (f*g)*h = f*(g*h)

• Can be further exploited for efficiency:

– Separable kernel factors into product of two 1D Gaussians

– Efficiency: multiple smoothing with 1D filter delivers same result as with high dimensional 
filter

Credit: I. Kokkinos 



Separability of the Gaussian filter for 2D

Credit: D. Lowe



Separability: Numeric example for 2D

• 2D filters are separable if they can be expressed as the outer product of 
two vectors. For example:

Note: Convolution is associative: (f*g)*h = f*(g*h)

g

h

f

Credit: K. Grauman

For MN image, PQ filter:  2D takes MNPQ add/times, 

while 1D takes MN(P + Q)



More important filters: Edges/gradients and invariance

Credit: K. Grauman

• Motivation: We want to represent distinctive parts of an image



Derivatives and edges

image
intensity function

(along horizontal scanline) first derivative

edges correspond to

extrema of derivative

An edge is a place of rapid change in the 

image intensity function.

Credit: L. Lazebnik



More important filters: Derivative of Gaussian

 11  
0.0030    0.0133    0.0219    0.0133    0.0030
0.0133    0.0596    0.0983    0.0596    0.0133
0.0219    0.0983    0.1621    0.0983    0.0219
0.0133    0.0596    0.0983    0.0596    0.0133
0.0030    0.0133    0.0219    0.0133    0.0030

)()( hgIhgI 

Credit: K. Grauman



More important filters: Derivative of Gaussian

x-direction y-direction

Credit: L. Lazebnik



Gaussian filters: Steerability

Credit: I. Kokkinos 

Steerable filter:



More important filters: Derivative(s) of Gaussian

• is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

Credit: K. Grauman



The Fourier transform

Further reading: Szeliski, Richard. Computer Vision: Algorithms and 
Applications. Springer, 2010, Chapter 3, Section 3.4



Linear image transformations

• In analyzing images, it’s often useful to make a change of basis.

Fourier transform, or

Wavelet transform, or

Steerable pyramid transform

fUF


 Vectorized image

transformed image

Credit: B. Freeman



Canonical basis for 2D signals

Kronecker delta

Credit: I. Kokkinos 



Fourier Transform = Change of Basis

Credit: I. Kokkinos 



Self-inverting transforms

FU

FUf












    

1

Same basis functions are used for the inverse transform

U transpose and complex conjugate

Credit: B. Freeman



Jean Baptiste Joseph Fourier (1768-1830)

had crazy idea (1807):
Any univariate function can be 
rewritten as a weighted sum of 
sines and cosines of different 
frequencies. 

• Don’t believe it?  

– Neither did Lagrange, 
Laplace, Poisson and 
others

– Not translated into 
English until 1878!

• But it’s true!

– called Fourier Series

...the manner in which the author arrives at these 
equations is not exempt of difficulties and...his 

analysis to integrate them still leaves something to be 
desired on the score of generality and even rigour.

Laplace

Lagrange
Legendre

Credit: J. Hays



Fourier Transform

Our building block:

Add enough of them to get 
any signal g(x) you want!

The Fourier transform F(w)
stores the magnitude and 
phase at each frequency

Magnitude encodes how 
much signal there is at a 
particular frequency

Phase encodes spatial 
information (indirectly)

fwxAsin(

Credit: J. Hays

f

A

w



Fourier Transform

•We want to understand the frequency w of our signal.  So, let’s 
reparametrize the signal by w instead of x:

fwxAsin(

f(x) F(w)Fourier 

Transform

F(w) f(x)Inverse Fourier 

Transform

For every w from 0 to inf, F(w) holds the amplitude A 

and phase f of the corresponding sine  
• How can F hold both?  Complex number trick!

)()()( www iIRF 
22 )()( ww IRA 

)(

)(
tan 1

w

w
f

R

I

We can always go back:

Credit: A. Efros



Frequency Spectra

• example : g(t) = sin(2πf t) + (1/3)sin(2π(3f) t)

= +

Credit: A. Efros



Frequency Spectra

Credit: J. Hays



= +

= 

Frequency Spectra

Credit: J. Hays
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Frequency Spectra

Credit: J. Hays
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Frequency Spectra

Credit: J. Hays
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Frequency Spectra

Credit: J. Hays
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Frequency Spectra

Credit: J. Hays



= 
1

1
sin(2 )

k

A kt
k








Frequency Spectra

Credit: J. Hays



Basics: The Fourier transform 

Eigenfunctions

• An eigenfunction of a system is one that is simply multiplied by another factor in the output.

• We think of this as analogous to the case of eigenvectors from linear algebra.

f(w) A(w) f(w)

Credit: R. Wildes



Basics: The Fourier transform 

Eigenfunctions

• An eigenfunction of a system is one that is simply multiplied by another factor in the output.

• We think of this as analogous to the case of eigenvectors from linear algebra.

Remark

• Notation

with the imaginary number

f(w) A(w) f(w)

)exp(iwteiwt 

1i

Credit: R. Wildes



Basics: The Fourier transform 

Eigenfunctions

• An eigenfunction of a system is one that is simply multiplied by another factor in the output.

• We think of this as analogous to the case of eigenvectors from linear algebra. 

• For the case of 1D Linear Shift Invariant (LSI) systems we find that exp(iwt) is an eigenfunction of 
convolution.

• Here A(w) is the (possibly complex) factor by which the input signal is multiplied.

• So, from the input exponential we obtain another exponential; but, scaled and shifted in phase.

f(w) A(w) f(w)

exp(iwt) A(w) exp(iwt)

Credit: R. Wildes



Basics: The Fourier transform 

Eigenfunctions

• An eigenfunction of a system is one that is simply multiplied by another factor in the output.

• We think of this as analogous to the case of eigenvectors from linear algebra. 

• For the case of 1D LSI systems we find that exp(iwt) is an eigenfunction of convolution.

• Here A(w) is the (possibly complex) factor by which the input signal is multiplied.

• So, from the input exponential we obtain another exponential; but, scaled and shifted in phase.

Frequency

• We call w the frequency (or wave number) of the eigenfunction.

• In practice, we use real waveforms, like cos(wt) and sin(wt), with the relationship

exp(iwt)=cos(wt) + i sin(wt)

which is known as Euler’s relation.

• The complex exponential is used in derivations simply because it provides a compact notation.

f(w) A(w) f(w)

exp(iwt) A(w) exp(iwt)

Credit: R. Wildes



Basics: The Fourier transform 

1D frequency
• We consider functions of the form

f(x) = Acos(ux + d)

where

A is the amplitude

u is the (angular) frequency

d is the phase constant.

• Notice that the function repeats its value 
when ux + d increases by      .

• For example, when d = 0, the maxima and 
minima occur when                , for k an integer.kux 

x

f(x)

A

d/u

u/2

2

Credit: R. Wildes
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Fourier transform: 1D case

Consider

• A graphical interpretation
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x

x

Credit: R. Wildes



Consider

• A graphical interpretation
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Fourier transform: 1D case

Credit: R. Wildes



Fourier transform: 1D case

Consider

• A graphical interpretation
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Credit: R. Wildes



Fourier transform: 1D case

Consider

• A graphical interpretation

)(

6cos
3

2

4cos

2cos
2

1

1

xf

x

x

x















+

+

+

x

x

x

x

x

=

=

Credit: R. Wildes



Fourier transform: 1D case

Consider
• A graphical interpretation

Observation
• Complicated signals can be represented as 

the sum of simple components.
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Credit: R. Wildes



Fourier transform: 1D case
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Credit: R. Wildes



Fourier transform: 1D case
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• By symmetry, we may choose

to represent this as u
Credit: R. Wildes



The Fourier transform of an image

Source image (J. Fourier)                        Fourier power spectrum

Credit: R. Wildes



Basics: The 2D Fourier transform 

2D Eigenfunctions

• For the case of 1D LSI systems we found that exp(iwt) is an eigenfunction of 
convolution.

• One can show that that exp[i(ux+vy)] is an eigenfunction in 2D.

• The 2D Fourier transform F(u,v) of f(x,y) is given by

exp[i(ux+vy)] A(u,v) exp[i(ux+vy)]

Credit: R. Wildes

exp(iwt) A(w) exp(iwt)
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The 2D discrete Fourier transform

Discrete domain, Image of height M and width N
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Basics: The Fourier transform 

2D frequency

• For two spatial dimensions, we see that 
there are two corresponding frequency 

components, u and v.

• We refer to the uv-plane as the frequency 
domain.

• We refer to the xy-plane as the spatial 
domain.

• The real waveforms cos(ux+vy) and 

sin(ux+vy) correspond to waves in 2D.

y

x

The maxima and minima

of the cosinusoids lie

along parallel equidistant

lines                         for k

an integer.

kvyux 

(u,v)=(a,0)

Credit: R. Wildes

Cross sections orthogonal to

the ridges show a sinusoidal

profile

],[ yxf
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Basics: The Fourier transform 

2D frequency

• For two spatial dimensions, we see that 
there are two corresponding frequency 

components, u and v.

• We refer to the uv-plane as the frequency 
domain.

• We refer to the xy-plane as the spatial 
domain.

• The real waveforms cos(ux+vy) and 

sin(ux+vy) correspond to waves in 2D.

y

Cross sections orthogonal to

the ridges show a sinusoidal

profile

x

The maxima and minima

of the cosinusoids lie

along parallel equidistant

lines                         for k

an integer.

kvyux 

(u,v)=(0,a)

Credit: R. Wildes
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Basics: The Fourier transform 

2D frequency

• For two spatial dimensions, we see that 
there are two corresponding frequency 

components, u and v.

• We refer to the uv-plane as the frequency 
domain.

• We refer to the xy-plane as the spatial 
domain.

• The real waveforms cos(ux+vy) and 

sin(ux+vy) correspond to waves in 2D.

y

x

The maxima and minima

of the cosinusoids lie

along parallel equidistant

lines                         for k

an integer.

kvyux 

Credit: R. Wildes

Cross sections orthogonal to

the ridges show a sinusoidal

profile

(u,v)/|(u,v)|

],[ yxf



The Fourier transform: 2D case

A 2D example

• Recall the 1D example

x

f(x) F(u)

u

for the cosine component

Credit: R. Wildes



The Fourier transform: 2D case

A 2D example

• Recall the 1D example

• And the interpretation of 2D spatial frequency

x

y

The maxima and minima

of the cosinusoids lie

along parallel equidistant

lines                         for k

an integer.

kvyux 

x

f(x) F(u)F(u)

u

for the cosine component

Credit: R. Wildes
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The Fourier transform: 2D case

A 2D example

• Recall the 1D example

• Then a 2D analogue could be

x

y

x

f(x) F(u)F(u)

u

for the cosine component

Credit: R. Wildes
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The Fourier transform: 2D case

A 2D example

• Recall the 1D example

• Then a 2D analogue could be

x

y

x

f(x) F(u)

v

u

F(u)

u

for the cosine component

Credit: R. Wildes

],[ vuF],[ yxf



To get some sense of what 

basis elements look like, we 

plot a basis element --- or 

rather, its real part ---

as a function of x,y for some 

fixed u, v. We get a function 

that is constant when (ux+vy) 

is constant. The magnitude of 

the vector (u, v) gives a 

frequency, and its direction 

gives an orientation. The 

function is a sinusoid with 

this frequency along the 

direction, and constant 

perpendicular to the 

direction. 

u

v

 vyuxie 

 vyuxie 

Credit: B. Freeman



Here u and v 

are larger than 

in the previous 

slide.

u

v
 vyuxie 

 vyuxie 

Credit: B. Freeman



And larger still...

u

v

 vyuxie 

 vyuxie 

Credit: B. Freeman



The Fourier transform: Filtering

Intensity Image

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering



The Fourier transform: Filtering

+ =

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering

More: http://www.cs.unm.edu/~brayer/vision/fourier.html



Understanding the Fourier transform of an image

Source image (J. Fourier)                        Fourier power spectrum

Credit: K. Derpanis



Phase and Magnitude

• Fourier transform of a real 
function is complex
– difficult to plot, visualize

– instead, we can think of the 
phase and magnitude of the 
transform

• Phase is the phase of the 
complex transform

• Magnitude is the magnitude 
of the complex transform

• Curious fact
– all natural images have about 

the same magnitude 
transform

– hence, phase seems to 
matter, but magnitude largely 
doesn’t

• Demonstration
– Take two pictures, swap the 

phase transforms, compute 
the inverse - what does the 
result look like?

Credit: B. Freeman



Credit: B. Freeman



This is the 

magnitude 

transform 

of the 

cheetah pic

Credit: B. Freeman



This is the 

phase 

transform 

of the 

cheetah pic

Credit: B. Freeman



Credit: B. Freeman



This is the 

magnitude 

transform 

of the zebra 

pic

Credit: B. Freeman



This is the 

phase 

transform 

of the zebra 

pic

Credit: B. Freeman



Reconstruction 

with zebra 

phase, cheetah 

magnitude

Credit: B. Freeman



Reconstruction 

with cheetah 

phase, zebra 

magnitude

Credit: B. Freeman



Extension to 3D

Credit: K. Derpanis



Filtering in spatial domain
-101

-202

-101

* =

Credit: J. Hays



The Convolution Theorem

• The Fourier transform of the convolution of two 
functions is the product of their Fourier transforms

• Convolution in spatial domain is equivalent to 
multiplication in frequency domain!

]F[]F[]F[ hghg 

]]F[][F[F* 1 hghg 

Credit: J. Hays



Filtering in frequency domain

FFT

FFT

Inverse FFT

=

Credit: D. Hoiem

Fast Fourier Transform (FFT) = fast implementation



Gaussian

Credit: D. Hoiem

Why does the Gaussian give a nice smooth image, but the 
square filter give edgy artifacts?



Box Filter

Credit: D. Hoiem

Why does the Gaussian give a nice smooth image, but the 
square filter give edgy artifacts?



Low pass filtering
http://www.reindeergraphics.com

Credit: R. Fergus



High pass filtering
http://www.reindeergraphics.com

Credit: R. Fergus



Low-pass, Band-pass, High-pass filters

low-pass:

High-pass / band-pass:

Credit: A. Efros



Why is the Frequency domain useful for us?

• The linear convolution operation can be understood from a different angle

• It can be performed very efficient using a clever implementation (FFT) 

• The Frequency domain provides an alternative way to understand and manipulate the 
content of images



Match the spatial domain image to the Fourier
magnitude image

Credit: K. Derpanis



Spatial Domain

Basis functions:

…
…

…
…

..

Tells you where things are….

… but no concept of what it is

Credit: R. Fergus



Fourier domain

Basis functions:

Tells you what is in the image….

… but not where it is

…
…

…
…

…
…

Credit: R. Fergus



Modulation property and Gabor filters

Credit: I. Kokkinos 



Modulation property and Gabor filters

Credit: I. Kokkinos 



2D Gabor filterbank and texture analysis

Credit: I. Kokkinos 



2D Gabor filterbank and texture analysis

Credit: I. Kokkinos 



2D Gabor filterbank and texture analysis

Credit: I. Kokkinos 



Summary: Images as a composition of local parts
Filtering example

• Why filtering?

– Statistics of images look similar at
different locations

– Dependencies are very local 

– Filtering is an opteration with 
translation equivariance

Input Feature Map

.

.

.

Credit: R. Fergus



Image 
Pixels Apply

Gabor filters

Spatial pool 

(Sum) 

Normalize to unit 
length

Feature 
Vector

Credit: R. Fergus

Summary: Compare: SIFT Descriptor



Summary

• Linear filtering and the importance of convolution

– Apply a filtermask to the local neighborhood at each pixel in the image

– The filtermask defines how to combine values from neighbors.

– Can be used for

• Extract intermediate representations to abstract images by higher-level 
“features”, for further processing (i.e., preserve the useful information only 
and discard redundancy)

• Image modification, e.g., to reduce noise, resize, increase contrast, etc.

• Match template images (e.g. by correlating two image patches)

• Image filtering in the frequency domain

– Provides a nice way to illustrate the effect of linear filtering

• Filtering is a way to modify the frequencies of images

– Efficient signal filtering is possible in that domain

– The frequency domain offers an alternative way to understanding and 
manipulating the image.


