
4. How to fuse the two streams temporally? 

5. Proposed Architecture

o Our architecture applies two-stream ConvNets [1] that capture short-term information to

temporally adjacent inputs at a coarse temporal scale

o The two streams are fused by a 3D filter that is able to learn correspondences between

highly abstract features of the spatial stream and temporal stream

o The resulting features from the and the temporal stream are 3D-pooled in

space and time to learn spatiotemporal and purely temporal features

1. Overview

o We study a number of ways of fusing ConvNet towers both

spatially and temporally

We make the following findings: 

1. A spatial and temporal network can be fused at a convolution

layer with a substantial saving in parameters

2. It is best to fuse such networks at the last convolutional layer

3. Pooling of abstract conv features over spatiotemporal

neighbourhoods further boosts performance

o Based on our studies we propose a new ConvNet architecture

2. How to fuse the two streams spatially? 

• Sum:

• Max:

• Concatenation:

• Convolution:

• Bilinear:

3. Where to fuse the network streams?
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Two examples of where fusion layers can be placed:
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o Fuse the two networks such that channel responses at the same

pixel position are put in correspondence

2D Pooling: Does not combine feature maps over time [1]

3D Pooling: Max-pooling of the temporally stacked features

3D Conv + 3D Pooling: Applies convolutional fusion to the

temporally stacked features from both streams followed by pooling

Temporal sampling:

o The temporal fusion layer receives temporal chunks that are

frames apart

o This enables us to

1. Capture short scale ( ) temporal features at the input of

the temporal network (e.g. the drawing of an arrow)

2. Put them into context over a longer temporal scale ( )

at a higher layer of the network (e.g. drawing an arrow,

bending a bow, and shooting an arrow)

Code & models available at github.com/feichtenhofer/twostreamfusion
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6. Comparison with the state-of-the-art

Input features Output features

Performance for Conv fusion on UCF101 (split1)

Performance on UCF101 (split1)


