

Convolutional Two-Stream Network Fusion for Video Action Recognition

We make the following findings:

	In	put features	$\mathbf{x}_t^a, \mathbf{x}_t^b$.	\rightarrow	Outpu	t features y	
•	Su	m:	$y^{\mathrm{sum}}_{i,j,d} = x^a_{i,j,d} + x^b_{i,j,d},$				
•	Max:		$y_{i,j,d}^{\max} = \max\{x_{i,j,d}^{a}, x_{i,j,d}^{b}\},\$				
•	Concatenation		$y_{i,j,2d}^{\text{cat}} = x_{i,j,d}^a$ $y_{i,j,2d-1}^{\text{cat}} = x_{i,j,d}^b$				
•	Со	nvolution:	$\mathbf{y}^{\text{conv}} = \mathbf{y}^{\text{cat}} * \mathbf{f} + b,$				
•	Bil	inear:	$\mathbf{y}^{\text{bil}} = \sum_{i=1}^{H} \sum_{j=1}^{W} \mathbf{x}_{i,j}^{a \top} \otimes \mathbf{x}_{i,j}^{b}.$				
		Fusion Method	Fusion Laver	Acc.	#lavers	#parameters	
		Sum [1]	Softmax	85.6%	16	181.42M	
		Sum (ours)	Softmax	85.94%	16	181.42M	
		Max	ReLU5	82.70%	13	97.31M	
		Concatenation	ReLU5	83.53%	13	172.81M	
		Bilinear	ReLU5	85.05%	10	6.61M+SVM	
		Sum	ReLU5	85.20%	13	97.31M	
		Conv	ReLU5	85.96%	14	97.58M	

This work was supported by the Austrian Science Fund (FWF) under project P27076, and also by EPSRC Programme Grant Seebibyte EP/M013774/1. The GPUs used for this research were donated by NVIDIA.

Christoph Feichtenhofer feichtenhofer@tugraz.at

Axel Pinz axel.pinz@tugraz.at

Code & models available at github.com/feichtenhofer/twostreamfusion

Andrew Zisserman az@robots.ox.ac.uk

x	*		

)1	HMDB51
%	56.93%
%	57.58%
%	58.63%

- Our architecture applies two-stream ConvNets [1] that capture short-term information to temporally adjacent inputs at a coarse temporal scale
- The two streams are fused by a 3D filter that is able to learn correspondences between highly abstract features of the spatial stream and temporal stream
- The resulting features from the fusion stream and the temporal stream are 3D-pooled in space and time to learn spatiotemporal and purely temporal features

Mathad		
Method	UCFIUI	ΠΝΙΔΟΤ
C3D [2]	85.2%	-
Two-Stream ConvNet [1]	88.0%	59.4%
Factorized ConvNet [3]	88.1%	59.1%
Two-Stream Conv Pooling [4]	88.2%	-
Ours (S:VGG-16, T:VGG-M)	90.8%	62.1%
Ours (S:VGG-16, T:VGG-16,	01.007	64.6%
single tower after fusion)	91.070	
Ours (S:VGG-16, T:VGG-16)	92.5%	65.4%
IDT+higher dimensional FV [5]	87.9%	61.1%
C3D+IDT [2]	90.4%	-
TDD+IDT [6]	91.5%	65.9%
Ours+IDT (S:VGG-16, T:VGG-M)	92.5%	67.3%
Ours+IDT (S:VGG-16, T:VGG-16)	93.5%	69.2%

[1] K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. In Proc. NIPS, 2014. [2] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with 3D convolutional networks. In Proc.

ICCV, 2015. [3] Lin Sun, Kui Jia, Dit-Yan Yeung, and Bertram Shi. Human action recognition using factorized spatio-temporal convolutional networks. Ir Proc. ICCV, 2015. [4] J. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici. Beyond short snippets: Deep networks for video classification. In Proc. CVPR, 2015 [5] X. Peng, L.Wang, X.Wang, and Y. Qiao. Bag of visual words and fusion methods for action recognition: Comprehensive study and good practice. CoRR. abs/1405.4506, 2014. [6] Limin Wang, Yu Qiao, and Xiaoou Tang. Action recognition with trajectory-pooled deep-convolutional descriptors. In Proc. CVPR, 2015.

5. Proposed Architecture

rison with the state-of-the-art