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TuSimple Velocity Estimation Challenge

o Information about the position, as well as the motion of the agents in the vehicle’s
surroundings plays an important role in motion planning.

o Traditionally, such information is perceived by an expensive range sensor, e.g LiDAR.
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Data statistics

o Daytime recorded video on highway

o Vehicles with relative distance ranging from 5
meters to up to 90 meters.

o Size:

• Train: 1074 clips of 2s videos in 20 frames per
second. 3222 annotated vehicles.

• Test: 269 clips of videos with same format as
training data.

o Annotations:

• Relative position and velocity generated by
range sensors for longitudinal (X) and lateral
(Y) direction

o Supplementary data:

• 5066 images with human labeled bounding
boxes on vehicles (not used)

(ground truth velocity in m/s)
(estimated velocity in m/s)
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Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-backward error: Automatic detection of tracking failures. In ICPR 2010.
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C. Godard, O. Mac Aodha, and G. J. Brostow. 
Unsupervised monocular depth estimation with left-right consistency. In 
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Eddy Ilg, Nikolaus Mayer, T. Saikia, Margret Keuper, Alexey Dosovitskiy, Thomas Brox
FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks In CVPR, 2017
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Weight decay, Dropout 
& CReLU [1] 

[1] W. Shang, K. Sohn, D. Almeida, and H. Lee. Understanding and improving convolutional 
neural networks via concatenated rectied linear units. CoRR,
abs/1603.05201, 2016.
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Training & Testing Results

o Regressor has to operate on diverse feature scales

o We train three Distance-models for near / med / far scales based on the box area

o Varying [hidden layers x units]: [3x40] (near), [4x60] (medium), and [4x70] (far).

o Training data for each distance is split up into 5 partitions.

o 4 are used as training set, the 5th is used for validation

o After 2000 epochs, the model with the lowest validation error is chosen

o This results in 3x5 models for the entire dataset.

o Performance gain especially for med and far cases
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Qualitative Results – Test set

(estimated velocity in m/s)
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Summary

o Our approach is based on spatiotemporal depth, motion and tracking features for 
regression of vehicle velocities
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o The highly abstract feature representation allows learning from few training samples

o Improvements could be made by backpropagating into the ConvNet layers which would
benet from larger datasets

o Implemented by two students in one week of work - Thanks to Moritz and Michael!

o Would not have been possible without the good practice of sharing code among our
community!


