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Dynamic Scene Recognition with
Complementary Spatiotemporal Features

Christoph Feichtenhofer Axel Pinz Richard P. Wildes

Abstract—This paper presents Dynamically Pooled Complementary Features, a unified approach to dynamic scene recognition
that analyzes a short video clip in terms of its spatial, temporal and color properties. The complementarity of these properties
is preserved through all main steps of processing, including primitive feature extraction, coding and pooling. In the feature
extraction step, spatial orientations capture static appearance, spatiotemporal oriented energies capture image dynamics and
color statistics capture chromatic information. Subsequently, primitive features are encoded into a mid-level representation that
has been learned for the task of dynamic scene recognition. Finally, a novel dynamic spacetime pyramid is introduced. This
dynamic pooling approach can handle both global as well as local motion by adapting to the temporal structure, as guided by
pooling energies. The resulting system provides online recognition of dynamic scenes that is thoroughly evaluated on the two
current benchmark datasets and yields best results to date on both datasets. In-depth analysis reveals the benefits of explicitly
modeling feature complementarity in combination with the dynamic spacetime pyramid, indicating that this unified approach
should be well-suited to many areas of video analysis.

Index Terms—Dynamic scenes, feature representations, visual spacetime, image dynamics, spatiotemporal orientation
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1 INTRODUCTION
Video analysis is a highly researched area and cur-
rently there is an enormous interest in spacetime
analysis at various levels of complexity, ranging from
optical flow and dynamic texture analysis to high-
level analysis in terms of actions, activities and local-
ization of particular events in videos. While the target
application in this paper is dynamic scene recognition,
at the same time this paper contributes a principled,
well-founded suite of representations and algorithms
with potential to benefit spacetime analysis at all
levels of abstraction.

Dynamic scenes are characterized by a collection
of dynamic patterns and their spatial layout, as cap-
tured in short video clips. For instance, a beach scene
might be characterized by drifting overhead clouds,
mid-scene water waves and a foreground of static
sandy texture. Other examples include forest fires,
avalanches and traffic scenes. These scenes may be
captured by either stationary or moving cameras;
thus, while scene motion is characteristic, it is not
exclusive of camera induced motion. Indeed, dynamic
scene classification in the presence of camera motion
has proven to be more challenging than when this
confounding attribute is absent. In comparison, dy-
namic textures (e.g., [1, 2, 3]) also are concerned with
complicated dynamic patterns, but in simpler settings,
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typically with stationary cameras and the field of
view completely occupied by the particular complex
dynamic pattern.

Currently, there exist two benchmark datasets of
dynamic scene videos with [4], and without camera
motion [5]; the proposed approach is evaluated on
both of these datasets. Figure 1 shows typical images
from a few categories of these datasets, illustrating the
challenges of small inter-class differences (e.g., a wa-
terfall may appear very similar to a fountain) as well
as large intra-class variations. Interestingly, humans
are able to perform dynamic scene recognition quickly
and accurately [6, 7], and with little attention paid to
the objects present in the scene [8], which also makes
automated dynamic scene recognition an attractive
goal in itself. Furthermore, dynamic scene recognition
can provide relevant contextual information in many
other applications of video analysis (e.g., scene context
can improve human action recognition [9]).

In this paper, dynamic scene recognition is tack-
led in accord with the dominant approach to image
classification and object recognition via three steps:
feature extraction, coding and pooling. As pointed out
in [10] for the case of the coding step, “the devil is
in the details”, and careful choice of methods and
parameters is crucial for success of all three steps.
Figure 2 provides an overview of the present ap-
proach, which is termed “Dynamically Pooled Com-
plementary Features” (DPCF). An input video is an-
alyzed in slices of the sequence, which are defined
as short temporal intervals. For each slice, at each
spatiotemporal location x = (x, y, t)>, complementary
spatial vS, temporal vT, and color vC features are
extracted. Next, these features are encoded into a mid-
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(a) Images from three different classes with similar appearance.

(b) Images from landslide sequences with large differences in appearance.

Fig. 1: Examples for small inter class differences (a) and large intra class variations (b) from the YUPENN [5]
(a) and the Maryland [4] (b) datasets.
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Fig. 2: Dynamically Pooled Complementary Features (DPCF) Overview. First, spatial vS, temporal vT, and
color vC features are extracted at each spatiotemporal location x = (x, y, t)> from a temporal slice of the
input video. Second, features are encoded into a mid-level representation learned for the task and also used
to extract dynamic pooling energies. Third, the encoded features are pooled via a novel dynamic spacetime
pyramid that adapts to the temporal image structure, as guided by the pooling energies. The pooled encodings
are concatenated into vectors that serve as the final representation for online recognition.

level representation that has been tuned to the task of
dynamic scene recognition via a training procedure.
Finally, the encoded features are pooled by a novel,
dynamic spacetime pyramid that adapts to temporal
scene dynamics, resulting in a feature vector, f , that
is subject to online classification. Complementarity
in terms of spatial, temporal and color channels is
preserved through all three steps of processing. Note
that the approach is also strongly supported by find-
ings from neurobiology of natural visual systems
[11], where there is a separation into parvocellular,
magnocellular and konio layers that strongly suggests
a similar complementarity (spatial, motion and color
channels) of visual pathways.

The DPCF approach builds in previous research by
the authors [12, 13], yet provides significant advances
as detailed in Section 3. In empirical evaluation (see

Section 4), DPCF greatly outperforms both these pre-
vious approaches to dynamic scene recognition to set
a new state-of-the-art.

2 RELATED WORK

Significant research has considered scene recognition
from single images (e.g., [14, 15, 16, 17, 18, 19, 20,
21, 22, 23]). In contrast, relatively little attention has
been paid to dynamic scene recognition from tem-
poral sequences of images (e.g., video), even though
temporal information should support additional rep-
resentational richness for visual scene classification.
A possible reason for this limited research in dy-
namic scenes was the lack of a substantial database;
however, this limitation has now been addressed, as
two dynamic scene video databases have appeared
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[4, 5]. Correspondingly, a literature on dynamic scene
recognition is emerging.

Video-based dynamic scene classification was first
introduced in the context of human action recognition,
where it was shown that automatically extracted scene
context information can improve action recognition
[9]. Histograms of optical flow were used to char-
acterize both human actions and scene dynamics.
Based on success in modeling dynamic textures with
linear dynamical systems [2, 24], other research has
considered such measurements for dynamic scene
recognition [4]. The same paper also presented an
alternative approach that fuses static and dynamic
features in a chaos theoretic approach. Empirical
evaluation showed that the chaos theoretic approach
outperformed the dynamical systems approach in
classification of ”in-the-wild” dynamic scenes. These
relative performance results may be accounted for
by the limitations of the first-order Markov property
and linearity assumptions inherent in the dynamical
systems approach.

By analogy with the important role that purely
spatial orientation primitives can play in static scene
recognition (e.g. [14, 15, 18]), research in dynamic
scene recognition has generalized to exploiting mea-
sures of spatiotemporal orientation [5, 12, 13]. Other
work has investigated slow feature analysis (SFA) [25]
applied to purely spatial orientation measurements
[26] for dynamic scene recognition [27]. More gen-
erally, spacetime oriented energies have shown their
virtues in many areas of video analysis, including
dynamic texture recognition [3], scene recognition [5],
target tracking [28], human action recognition [29],
anomaly detection [30] and spacetime stereo [31].

A useful perspective on these various research
strands is provided by a study [5] that systematically
investigated the impact of primitive feature represen-
tations as well as the utility of spatial pyramids [18]
for dynamic scene recognition. The study compared
spatial appearance, temporal dynamics and joint ap-
pearance/dynamics features to conclude that features
that jointly model spatial appearance and temporal
dynamics in conjunction with spatial pyramids pro-
vided overall best performance for recognizing dy-
namic scenes.

3 DYNAMICALLY POOLED COMPLEMEN-
TARY FEATURES – DPCF

This section details the Dynamically Pooled Com-
plementary Features (DPCF) approach to spacetime
image representation in application to dynamic scene
recognition. The description unfolds in accord with
the tripartite paradigm of primitive feature extraction,
encoding and pooling.

The approach leverages two ideas from previous
work by the authors in application to dynamic scene

recognition: Use of complementary features [12]; op-
eration in a bag of visual words framework using
a dynamic pyramid for pooling [13]. Otherwise, the
approach is significantly different from its predeces-
sors, as follows. First, the primitive features used
are different. The previous work using complemen-
tary features employed different spatial, temporal
and chromatic features [12]. The other work [13] did
not use complementary spatial and temporal features
at all. Second, DPCF aggregates its primitive fea-
ture descriptors in spatiotemporal grids to capture
neighborhood structure. Neither of the previous ap-
proaches explicitly modeled neighborhood structure.
Third, DPCF encodes features in terms of Fisher vec-
tors. In contrast, the previous approaches either did
not perform explicit encoding at all [12] or did so
via LLC encoding [13]. Finally, in classification DPCF
combines its complementary cues via late fusion of
their respective support vector machine (SVM) scores,
while [13] used a single SVM to classify its feature
vector and [12] used a random forest classifier.

3.1 Primitive feature extraction

The developed descriptor for dynamic scene repre-
sentation is based on the complementary combination
of several different primitive measurements. Spatially
oriented measurements are used to capture static
image appearance and are combined with temporal
oriented measurements to capture image dynamics.
Additionally, color channels are included to capture
complementary chromatic information. Thus, the fea-
tures are complementary by construction. Interest-
ingly, evidence from biological systems suggests that
they exploit similar complementary feature combina-
tion in their visual processing [32, 33, 34].

3.1.1 Spatial features

Spatial appearance information is extracted via ap-
plication of multiscale derivative filters that are
tuned for spatial orientation. Here, 2D Gaussian first
derivative filters, G(1)

2D(θi, σj) = κ ∂
∂θi

exp
(
−x

2+y2

2σ2
j

)
=

−κ(x cos θi + y sin θi) exp
(
−x

2+y2

2σ2
j

)
, with κ a normal-

ization factor, θi denoting orientation and σj scale, are
applied to yield a set of multiscale, multiorientation
measurements according to

ES(x; θi, σj) =
∑
Ω

G
(1)
2D(θi, σj) ∗ I(x), (1)

where I is an image, x = (x, y)> spatial coordinates,
∗ convolution, Ω a local aggregation sub-region and
subscript S appears on ES to denote spatial orientation.

Figure 3 shows the spatial filtering results on a
windmill farm sequence. Notice, e.g., how the vertical
structure of the windmill bases yields largest magni-
tude responses for the correspondingly oriented filter,
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θ3 = 90◦, while the different orientations of the wind-
mill blades are preferentially enhanced according to
the most closely matched filter orientations.

3.1.2 Temporal features
Similarly, dynamic information is extracted via ap-
plication of 3D Gaussian third derivative filters,
G

(3)
3D(θi, σj) = κ ∂3

∂θ3i
exp

(
−x

2+y2+t2

2σ2
j

)
, with θi now

denoting the 3D filter orientation (e.g., given in terms
of direction cosines and G

(3)
3D expanded analogously

to G
(1)
2D above) and σj scale,

EST(x; θi, σj) =
∑
Ω

|G(3)
3D(θi, σj) ∗ V(x)|2, (2)

with the grayscale spacetime volume, V , indexed by
x = (x, y, t)>, formed by stacking all video frames of
a sequence along the temporal axis, t, and Ω being the
aggregation sub-region. Subscript ST on EST denotes
spatiotemporal orientation.

Following previous work in spacetime texture anal-
ysis [3], the spatiotemporal responses, (2), are further
combined to yield measures of dynamic information
independent of spatial appearance, as follows. In the
frequency domain, motion occurs as a plane through
the origin [35, 36]. In particular, an image suffering
a uniform translation, v = (u, v, 1)>, can be written
as I(x) = I(x − ut, y − vt, t) and its corresponding
spectrum is given as Ĩ(k) = Ĩ(ωx, ωy)δ(ωxu+ωyv+ωt),
where k = (ωx, ωy, ωt)

> denotes the spatiotemporal
frequency vector, Ĩ denotes the Fourier transform of
I and δ(·) is the Dirac delta function. Geometrically,
Ĩ(k) can be interpreted as the spectrum being re-
stricted to a plane through the origin with normal v.
Correspondingly, summation across a set of x− y − t
energy measurements consistent with a single fre-
quency domain plane through the origin is indicative
of the associated spacetime orientation, independent
of purely spatial orientation.

Let the plane, Π(n̂), be defined by its normal,
n̂ = (nx, ny, nt)

>, then measurements of orientation
consistent with this plane are given as

ET(x; n̂k, σj) =
∑

θi∈Π(n̂k)

EST(x; θi, σj), (3)

with θi one of N + 1 equally spaced orientations
consistent with the frequency domain plane Π and
N = 3 is the order of the employed Gaussian deriva-
tive filters; for details see [3]. Here, the subscript
T on ET serves to denote that the spatiotemporal
measurements have been “marginalized” with respect
to purely spatial orientation.

As noted in Sec. 1, previous spacetime filtering
approaches to dynamic scene recognition tend to
exhibit decreased performance when dealing with
scenes captured with camera motion, in comparison
to scenes captured with stationary cameras. A likely
explanation for this result is that the approaches have

difficulty in disentangling image dynamics that are
due to camera motion vs. those that are intrinsic
to the scenes. Here, it is interesting to note that
camera motion often unfolds at coarser time scales
(e.g., extended pans and zooms) in comparison to
intrinsic scene dynamics (e.g., spacetime textures of
water, vegetation, etc.); however, previous approaches
have made their measurements using relatively coarse
temporal scales and thereby failed to exploit this
difference. In the present approach this difference in
time scale is captured by making use of only fine
scales, σ, during temporal filtering, (2), so that they are
preferentially matched to scene, as opposed to camera,
dynamics.

Owing to the bandpass nature of the Gaussian
derivative filters, the orientation measurements are
invariant to additive photometric variations (e.g., as
might arise from local image brightness change in
imaged scenes). To provide additional invariance to
multiplicative photometric variations for the dynamic
measurements, (3), each motion direction selective
measurement is normalized with respect to the sum
of all filter responses at that point according to

ÊT(x; n̂k, σj) =
ET(x; n̂k, σj)∑M

l=1ET(x; n̂l, σj) + ε
, (4)

where M denotes the number of temporal orientation
measurements considered to yield a normalized set
of measurements, ÊT. Note that ε is a small constant
added to the sum of the energies over all orienta-
tions. This bias operates as a noise floor and avoids
numerical instabilities at low overall energies. (See,
e.g., [37] for more general discussion of photometri-
cally invariant features.) To explicitly capture lack of
oriented spacetime structure, another feature channel

ÊεT(x;σj) =
ε∑M

l=1ET(x; n̂l, σj) + ε
, (5)

is added to the contrast-normalized filter responses of
(4). Note, e.g., that regions lacking oriented structure
will have the summation in (5) evaluate to 0; hence,
ÊεT will tend to 1 and thereby indicate relative lack of
structure.

The temporal orientation measurements, (3), can
be taken as providing measures of the signal energy
along the specified directions, n̂. This interpretation
is justified by Parseval’s theorem [38], which states
that the sum of the squared values over the spacetime
domain is proportional to the sum of the squared
magnitude of the Fourier components over the fre-
quency domain. Thus, for every spacetime location,
x, the local temporal energy ET(x; n̂k, σj) measures
the power of local temporal structure along each
considered orientation n̂k and scale σj .

Figure 3 shows the temporal energies for the em-
ployed filter orientations on a sequence of the wind-
mill farm. It is seen that the energies indicate dynamic
information, e.g., the dominant energies in Fig. 3(p)
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(a) (b) θ1 = 0◦ (c) θ2 = 45◦ (d) θ3 = 90◦ (e) θ4 = 135◦ (f) θ5 = 180◦ (g) θ6 = 225◦ (h) θ7 = 270◦ (i) θ8 = 315◦

(j)
n̂s = (0, 0, 1)>

(k)
n̂r = (1, 0, 1)>

(l)
n̂d = (0,−1, 1)>

(m)
n̂l = (−1, 0, 1)>

(n)
n̂u = (0, 1, 1)>

(o)
n̂hf = (1, 0, 0)>

(p)
n̂vf = (0, 1, 0)>

(q) ÊεT

Fig. 3: Spatial (first row) and temporal (second row) primitives for one temporal slice of a Windmill sequence
(a) from the YUPENN dataset. (b)-(i) illustrate the spatial filtering results (1) for eight orientations θ. (j)-(q)
illustrate the dynamic energies, (4), for the following directions n̂ = (nx, ny, nt)

>: static (j), rightward (k),
downward (l), leftward (m), upward (n), horizontal flicker (o), and vertical flicker (p). Further, (q) illustrates
the no structure channel, (5). The hottest colors (i.e., red) indicate the largest responses across each frame.

capture the movement of the rotor blades, as well as
static temporal information with the energies shown
in Fig. 3(j), reaching high values for the static struc-
tures on the ground of the scene. In contrast, Fig. 3(q)
shows ÊεT(x;σj), where large responses are seen in the
unstructured sky region.

It is interesting to note that while the employed
temporal and spatial features both make use of Gaus-
sian derivatives to capture local orientation informa-
tion, they differ in two ways. First, the spatial fea-
tures, (1), rely on lower order derivatives in compar-
ison to the temporal features, (2). In general, higher-
order derivatives offer more precise orientation tun-
ing than lower-order; however, for numerically stable
estimates they require concomitantly larger support
in implementation, which decreases precision in (spa-
tiotemporal) localization [36]. In application to dy-
namic scenes, preliminary experiments showed that in
this inevitable trade-off, precision in orientation was
most important for temporal feature description (i.e.,
direction of motion more important than exact posi-
tion of motion), whereas precision in localization was
most important for spatial feature description (i.e.,
position more important than directionality). Second,
the spatial feature measurements, (1), are not con-
verted to (normalized) energies, while the temporal
are, (4), because maintaining the contrast information
is critical for adequately capturing spatial appearance.

3.1.3 Chromatic information
Previous evaluations [4, 5, 12, 13] showed that inte-
grating color cues is useful for dynamic scene cate-
gorization. Color information is incorporated in the

present spacetime primitives via the addition of three
locally aggregated color measurements corresponding
to the mean

µm(x;σj) =
1

|Ω|
∑
Ω

Im(x), (6)

and the variance

σ2
m(x;σj) =

1

|Ω|
∑
Ω

[Im(x)− µm(x;σj)]
2
, (7)

of the three CIE-LUV color channels, i.e. m ∈
{L,U, V }, and all other notation is by analogy with
the filtering formula (1). Previous work on dynamic
scene recognition has used simple color histograms
to capture chromatic information [4, 5, 12, 13]. Here,
however, following on other research that showed
improved performance when moving from histogram
to mean and variance based color representations [39],
the latter approach is incorporated.

3.1.4 Temporal slice-based feature aggregation

The complementary spacetime orientation measure-
ments presented so far are defined locally (pointwise)
across a video sequence. To create descriptors that
capture their surrounding regions, the feature descrip-
tors are aggregated both temporally and spatially.

Initial temporal aggregation is performed by pro-
cessing input video in discrete batches of ∆t contigu-
ous frames, referred to as temporal slices. Temporal
slicing is motivated by the desire for incremental
processing that can allow for efficient, on-line opera-
tion. Use of short-term parceling of the measurements
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also is well matched with the restriction to use of
fine temporal scale during spatiotemporal filtering to
favor scene over camera dynamics.

Within each temporal slice, the local feature mea-
surements are sampled with a spatial stride of ∆x by
centering patches of size rx × ry pixels and cuboids
of size rx × ry × rt, for spatial and temporal features,
respectively. The neighborhood structure of these re-
gions is further captured by subdividing them into
cx × cy and cx × cy × ct sub-regions over which local
feature measurements are aggregated into histograms.
Here, the aggregation is naturally realized by set-
ting the support of Ω for the spatial (1), temporal
(3), and chromatic (6, 7), measurements to that of
the sub-regions. Finally, for each sample point, x,
feature vectors, vS(x), vT(x), vC(x), are defined for
the complementary spatial, temporal and chromatic
measurements. These vectors are generated by con-
catenating the measurements for each of the sub-
regions. Thus, each sample point is characterized by
its complementary features and neighborhood.

During subsequent encoding and pooling stages of
the processing pipeline, each temporal slice is treated
individually, as described in the next two sections.

3.2 Feature encoding

A variety of different coding procedures exist to con-
vert primitive local features, v(x) ∈ RD, into more
effective intermediate-level representations, c(x), and
the choice can significantly impact performance [10].
In the present case, the primitive features are given
in terms of the complementary features, vS(x), vT(x),
vC(x), defined in the previous section. For feature
encoding, the present work considers two particularly
effective coding techniques for dynamic scene classifi-
cation, Locality-constrained Linear Coding (LLC) and
Improved Fisher Vector (IFV); see [13] for a systematic
empirical evaluation of a representative set of four
contemporary coding techniques where LLC and IFV
performed best in application to dynamic scenes. In
both cases, the encoding is performed with respect to
an unsupervised trained codebook B ∈ RD×K .

In general, largely two categories of improved en-
coding approaches exist in the literature. One cate-
gory expresses features as combinations of (sparse)
codewords (e.g., [40, 41, 42]). The other category con-
siders differences between the original features and
the codewords (e.g., [39, 43, 44, 45]). LLC [41] is a
particularly strong performer of the first category. The
LLC code cLLC(x) ∈ RK encodes each local feature
v(x) by the M � K nearest codewords in B which is
trained by quantizing the extracted descriptors from
training sequences with K-means. Fisher vectors (FV)
[43] are considered as a representative of the second
category, as they typically outperform alternatives
[10]. An FV cFV(x) ∈ R2KD models mean and covari-
ance gradients between a set of features

{
v(x) ∈ RD

}

and the components of a codebook which is learned
on training descriptors by using a Gaussian mixture
model (GMM). The Improved Fisher Vector (IFV),
cIFV(x), is obtained by computing the signed square-
root to each element of cFV(x) followed by `2 nor-
malization [39]. The present work only focuses on the
improved version of the Fisher vector, since it con-
sequently outperforms FV when coupled with linear
SVM classifiers [13, 39].

Note that computing the average first and second
order differences between the features and each of the
GMM centres implicitly performs an average pooling
of the local features in the Fisher vector representa-
tion. LLC codes on the other hand are best pooled
via max-pooling, which takes the strongest codeword
response in a region and has been shown to be more
discriminative than average pooling [41, 46].

3.3 Dynamic feature pooling
When pooling the encoded features, c(x), from dy-
namic scenes, those that significantly change their
spatial location across time should be pooled adap-
tively in a correspondingly dynamic fashion. For ex-
ample, global image motion induced by a camera
pan could cause the image features to move with
time and pooling that is tied to finely specified im-
age location will fail to capture this state of affairs.
Similarly, when regions change their spatial relations
with time, pooling should adapt. In such situations, a
lack of appropriately dynamic pooling will degrade
recognition performance, as features pooled at one
location will have moved to a different location at a
subsequent time and thereby be at risk of improper
matching. Significantly, this challenge persists if the
pooling positions are hierarchically arranged [18] or
even more adaptively defined [42, 47, 48], but with-
out explicit attention to temporal changes in pooling
regions.

In contrast, features that retain their image positions
over time (i.e., static patterns) can be pooled within
finer, predefined grids, e.g., as with standard spatial
pyramid matching (SPM) [18]. Indeed, even highly
dynamic features that retain their overall spatial po-
sition across time (i.e., temporally stochastic patterns,
such as fluttering leaves on a bush and other dynamic
textures) can be pooled with fine grids. Thus, it is not
simply the presence of image dynamics that should
relax finely gridded pooling, but rather the presence
of larger scale coherent motion (e.g., as encountered
with global camera motion).

3.3.1 Dynamic pooling energies
In response to the above observations, a set of dy-
namic energies have been derived that favor orderless
pooling (e.g., global aggregation) when coarse scale
image motion dominates and spatial pooling (as in
an SPM scheme) when an encoded feature is static or
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its motion is stochastic but otherwise not changing
in overall spatial position. These energies are used
as pooling weights applied to the locally encoded
features so that they can be pooled in an appropriate
fashion.

The directional spacetime energies, (3), so far de-
rived are not sufficient for distinguishing between so
called coherent motion (e.g., as exemplified by large
scale motion resulting from camera movement) and
incoherent motion (e.g., as exemplified by stochastic
dynamic textures) [49, 50]. In the present context,
suppose that the directional energies are recovered
along the leftward, rightward, upward, downward
and four diagonal directions as well as static (zero ve-
locity), which will be denoted as l, r, u, d, ru, rd, lu, ld
and s, respectively. The desired pooling energies are
meant to capture coherent motion and that goal can be
accomplished by combining the directional energies in
opponent-motion channels as follows

EP|r−l|(x;σj) = |ET(x; n̂r, σj)− ET(x; n̂l, σj)|
EP|u−d|(x;σj) = |ET(x; n̂u, σj)− ET(x; n̂d, σj)|
EP|ru−ld|(x;σj) = |ET(x; n̂ru, σj)− ET(x; n̂ld, σj)|
EP|lu−rd|(x;σj) = |ET(x; n̂lu, σj)− ET(x; n̂rd, σj)| (8)

to yield a set of dynamic pooling energies, EP , rep-
resenting coherent image motion in 4 equally spaced
directions (horizontal (r − l), vertical (u− d) and two
diagonals (ru− ld and lu− rd)).

In contrast to the individual motion direction con-
sistent energies, (3), the pooling energies, (8), explic-
itly capture coherent motion across various directions.
For example, a spatial region with a stochastically
moving spacetime pattern, e.g. the leaves of a tree in
the wind can exhibit large motions in several specific
directions n̂; however, after taking the absolute arith-
metic difference from opponent directions, the coher-
ent motion pooling energies, (8), of such stochastic
spacetime texture patterns are approximately zero. On
the other hand, regions that are dominated by a single
direction of motion (i.e. coherent motion regions) will
yield a large response in the most closely matched
channel. (For an extended discussion of the relation-
ship between spatiotemporal oriented energies and
coherent motion see, e.g. [49].)

The pooling energies so far defined, (8), are `1
normalized together with the static energy channel,
ET(x; n̂s, σj), that indicates lack of coarse motion

ÊPk (x;σj) =
EPk (x;σj)∑

λ∈ΛE
P
λ (x;σj) + ε

, ∀k ∈ Λ, (9)

to yield a point-wise distribution of static, coherent,
as well as unstructured energy via the normalized ε
indicating homogeneous regions

ÊPε (x;σj) =
ε∑

λ∈ΛE
P
λ (x;σj) + ε

, (10)

with Λ = {s, |r − l|, |u− d|, |ru− ld|, |lu− rd|}. Fur-
ther, since regions without coherent motion or with
only fine scale motion (indicated by ÊPs ), as well as
homogeneous regions (indicated by ÊPε ), can be simi-
larly pooled with spatial gridding to capture geomet-
ric layout, static energy is summed with unstructured
energy as

ÊP|s+ε|(x;σj) = ÊPs (x;σj) + ÊPε (x;σj), (11)

to yield the final set of (coherent) motion di-
rections, Λ = {s+ ε, |r − l|, |u− d|, |ru− ld|, |lu− rd|},
that specify the dynamic pooling energies.

The dynamic pooling energies for a temporal sub-
set of a street sequence are shown in Fig. 4. Fig-
ure 4(a) depicts the central frame of the filtered
sequence and 4(b)-4(f) show the decomposition of
the filtered sequence into a distribution of static
and coherent motion dynamic energies. Observe that
the static+unstructured channel consists of large re-
sponses for stationary image structures, e.g., the build-
ings in the scene, as well as for homogeneous regions
such as the sky in the center of the scene. Whereas
the foreground red car’s dynamic energy can be de-
composed into several coherent motion channels with
a large part originating from the horizontal motion
channel, i.e., ÊP|r−l|(x), shown in Figure 4(c). Note
that fine-scale motions, such as the moving cars in
the background, are not captured by the coherent
motion channels (Fig. 4(c)-4(f)) and therefore exhibit
strong responses in the static channel 4(b), which is
appropriate as they form (part of) the background
dynamic texture.

(a) centre frame
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(f) ÊP|lu−rd|(x)

Fig. 4: Distribution of Dynamic Pooling Energies of
a Street Sequence from the YUPENN Dataset. (b)-
(f) show the decomposition of the sequence into a
distribution of pooling energies indicating stationar-
ity/homogeneity in (b) and coarse coherent motion
for several directions in (c)-(f). Hotter colors (e.g., red)
correspond to larger filter responses.

3.3.2 Dynamic spacetime pyramid
The pooling process creates a non-local representa-
tion by collecting the local feature codes in spatial
subregions based on summing (average-pooling) or
taking the maximum (max-pooling) across the codes.
When pooling the encodings, all analyzed feature



8

Coherent motion energies 
weight for pooling without 
spatial gridding.

Static energies weight 
for pooling in pyramid 
with spatial grids.

+L0 layer: pool

+L0 layer: pool

+L0 layer: pool

L1 layer: static energies

L2 layer: static energies

L0 layer: pool uniformly

+L0 layer: pool

Fig. 5: Dynamic Spacetime Pyramid. Larger responses
(hotter colors) in the static energies guide pooling
into coarse (L0) as well as fine grids (L1 and L2).
In contrast, coherent motion energies limit pooling to
the coarsest grid only (L0). Green arrows along the
sides of the coherent motion plots indicate directional
tunings. Input imagery is from the Street Sequence, as
shown in Fig. 4.

representations use a three-level spatial pyramid [18]
to capture weak spatial information in the feature
vectors, as this has previously been shown to increase
recognition accuracy [13]. The feature encodings are
pooled therein and concatenated for the final feature
vector. Thus, the basic pooling architecture partitions
the image into subdivisions constructed for each sam-
ple point in time, i.e. each temporal slice is partitioned
into 1×1, 2×2, and 4×4 spatial subdivisions, resulting
in 21 pyramid channels.

The proposed dynamic pyramid extends the stan-
dard three-level spatial pyramid [18] as follows.
For pooling at the coarsest pyramid level l =
0, i.e., in the region without spatial grid, feature
codes are aggregated globally. In regions with spa-
tial grids, however, i.e., l > 0 the static pool-
ing energies ÊP|s+ε|(x) are used as weights, empha-
sizing the local contribution of each visual word.
Lastly, to explicitly pool features favorably from
regions with coherent motion, four more channels
Λ = {|r − l|, |u− d|, |ru− ld|, |lu− rd|}, which per-
form weighted pooling with coherent energies ÊPλ (x),
are added to the pyramid. Due to the coarse-scale
motion of these features, the top pyramid level l = 0
without spatial information is used. Therefore, the
final spatiotemporal pyramid encodes a sample point
in time in 25 channels, with each channel capturing
specific spatial and temporal properties of the pooled
codewords. See Fig. 5 for an illustrative example.

Significantly, since all dynamic pooling energies
are normalized jointly, (9) and (10), the pooling has
exactly the desired effect: Feature codes derived from
points with larger magnitude static energies, ÊP|s+ε|,
are preferentially pooled across all available spatial
griddings to capture spatial layout. In contrast, feature

codes derived from points with larger magnitude
coherent motion energies receive small weights from
the static energies during finer grid pooling and will
instead be preferentially pooled globally according
to their particular motion direction; thus, the overall
movement of such features is captured without con-
taminating spatial layout information. For example,
encoded features on horizontally moving objects are
pooled with high corresponding weights ÊP|r−l| to ex-
plicitly capture horizontally moving image structures
in the dynamic spacetime pyramid.

This novel pooling process based on dynamic
weights is independent of the underlying type of
pooling. For average pooling, the dynamic energies
are used as weights in the code-summation process; in
particular, when computing the mean and covariance
gradients of the Fisher vector representation, the local
image features are weighted multiplicatively with the
dynamic energies. Similarly, for max-pooling used
in LLC representations the location of the strongest
codeword is found following multiplicative weighting
of the codes with the dynamic pooling energies.

Finally, a global feature vector, f , representing a
point in time of the video, is constructed by concate-
nating the feature poolings of all pyramid channels.
These feature vectors then serve as the basis of an on-
line recognition scheme when coupled with a classi-
fier, e.g., a Support Vector Machine (SVM).

3.4 Detailed implementation summary

1) Local feature extraction. The video is processed
in a temporal sliding window by dense extraction of
spatial (1), temporal (3) and chromatic (6, 7) primitives
at every ∆t = 16 frames (the duration of a temporal
slice is 16 frames). All features are extracted at |σ| = 5
different scales by downscaling the image (i.e. spatial
domain only in preference for capturing short term
temporal variations) by factors of

√
2. For the oriented

spatial and spatiotemporal filtering operations, (1)
and (2), the filter lengths are set to 5 and 13 pixels
and the number of filter orientations are set to |θ| = 2
and |θ| = 10 in order to span the orientation space for
the order and dimensionality of filters employed [51].
The final descriptors, vS(x), vT(x), vC(x) are extracted
with a spatial stride of ∆x = 8 pixels and cover
regions of size rx × ry × rt = 16 × 16 × 16 which are
divided into cx × cy × ct = 2 × 2 × 3 sub-regions for
histogram summation. To construct vS(x), the spatial
orientations for steering the basis filter responses is set
to 8, creating DS = 2× 2× 8 = 32 dimensional spatial
descriptors. The temporal descriptors, vT(x), capture
8 directions, parameterized by n̂ corresponding to
motion along the leftward, rightward, upward and
downward directions as well as static (zero velocity),
flicker (infinite horizontal / vertical velocity) and
unstructuredness ((5) with ε = 500), to result in
DT = 2× 2× 3× 8 = 96 dimensions. Lastly, the color
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descriptors, vC(x), record LUV mean and variance of
the sub-regions in DC = 2 × 2 × 6 = 24 dimensions.
As a post-processing step, RootSIFT normalization
[52] is applied to each descriptor i.e., signed square
rooting each dimension followed by `2 normalization.
Notably, owing to the separability and steerabilty of
the underlying filtering operations, all features can be
extracted with modest computational expense.

2) Feature encoding. The local descriptors are en-
coded either via LLC or IFV. A random subset of fea-
tures from the training set, consisting of a maximum
of 1000 descriptors from each training sequence, are
used to learn a visual vocabulary. For LLC, the code-
book entries are learned by quantizing the extracted
descriptors from the training sequences with K-means
to K = 200 codewords. All parameters in LLC are set
to the default values from the original publications
[10, 41]. To maintain low computational complexity,
an approximate nearest neighbour search is used for
efficient clustering and encoding. In the case of Fisher
vectors, a GMM with KS = 50, KT = 100, KC = 10
mixtures is fit to the subsampled training descrip-
tors. As shown in Section 4, different codebook sizes
can impact performance. Before IFV encoding, PCA
whitening is applied to the descriptors to reduce their
dimension by a factor of two. Data decorrelation via
PCA also supports the diagonal covariance assump-
tions in the employed GMM [45].

3) Feature pooling. To compare against conven-
tional pooling, an l = 3 level SPM is used to maintain
weak spatial information of the features extracted
in each temporal instance. The resulting 21 pooling
regions from spatial grids of size 2l × 2l create a
21×K = 21× 200 = 4200 dimensional feature vector
for LLC encoding and a 21×2×KGMM×D = 21×2×
KGMM×28 = 1176×KGMM dimensional feature vector
for the Fisher encoding. As in the original publica-
tions, pooling is performed using either the maximum
of the encoded features (LLC) or summation of the
Fisher vector gradient (IFV) over the pooling region.
To calculate the proposed dynamic pooling energies,
the spatiotemporal aggregation region Ω in (2) is set
spatially to one fourth of the video frame size and
temporally to the length of the spatiotemporal filters
(13 frames).

4) Learning and Classification. Each set of en-
coded features pooled from the same temporal in-
stance generates a feature vector, f . For training, all
feature vectors extracted from the training set are
used to train one-vs-rest linear SVM classifiers with
`2 normalization applied to the feature vectors. The
SVM’s regularization loss trade-off parameter is set
to C = 1. During classification, each feature vector
for each temporal slice of a video is classified by
the one-vs-rest SVM to yield a temporal prediction;
overall classification for each feature type is according
to the majority of the predictions of each slice. Prelim-
inary experiments that instead immediately classified

across the entire video revealed lower classification
performance than classifying initially by temporal
slices. Temporal slicing increases the training data by
a large factor and allows the videos to be classified
very early, since the classifications of the temporal
slices are mostly equal over time and vary only in
cases with large temporal changes, e.g., after scene
cuts. The complementary features are combined by
late fusion of their respective SVM scores, which
are linearly combined with weights determined after
cross-validation on the training data, to yield a final
classification of a video.

4 EMPIRICAL EVALUATION

The proposed Dynamically Pooled Complimentary
Feature (DPCF) system is evaluated on the Maryland
“In-The-Wild” [4] and YUPENN [5] dynamic scene
recognition datasets. The datasets contain videos
showing a wide range of natural dynamic scenes
(avalanches, traffic, forest fires, waterfalls, etc.); see
Tables 3 and 4 where complete listings can be read off
the left most columns of the tables. It should be noted
that the Maryland dataset contains a high degree of
coarse scale motion (mostly from camera movement),
whereas the YUPENN dynamic scene sequences are
captured from static cameras only.

A leave-one-video-out experiment is used for con-
sistency with previous evaluations [4, 5, 12, 13, 27].
The structure of the experiments is two-layered. First,
Section 4.1 evaluates the proposed complementary
primitive features of Section 3.1. This evaluation in-
cludes LLC feature encoding that is based on local
codeword statistics and IFV encoding based on the
difference between the codewords and features to
encode. The section also evaluates the novel dynamic
pooling framework of Section 3.3. Second, in Sec-
tion 4.2 the full proposed complementary system is
compared with the state-of-the-art in dynamic scene
classification.

4.1 Feature comparison and combination
In Table 1, the average classification performance is
shown for the three proposed complementary feature
primitives, the two investigated coding approaches as
well as the proposed dynamic pooling.

The results comparing the three descriptor types
show that the spatial descriptors, vS, perform best on
the Maryland dataset which, to some degree, can be
attributed to the highly divergent motion information
(even for videos of the same class). On the other
hand, the temporal descriptor, vT, achieves overall
best classification rates on the YUPENN dataset.

Color descriptors, vC, yield considerably worse per-
formance, being around 20% lower than their spatial
and temporal complements. As noted in Section 3.4,
the late fusion of (all) three descriptors is carried out
by combining the SVM score vectors with weights
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Maryland “In-The-Wild” dataset

Primitives vS vS vS vS vT vT vT vT vC vC vC vC all all all all
Encoding LLC LLC IFV IFV LLC LLC IFV IFV LLC LLC IFV IFV LLC LLC IFV IFV
Pooling static dyn. static dyn. static dyn. static dyn. static dyn. static dyn. static dyn. static dyn.

Avg. Perf. 67.69 69.23 74.62 77.69 59.23 60.00 65.38 70.77 49.23 52.31 54.62 55.38 70.00 75.38 72.31 80.00

YUPENN Dynamic Scenes dataset

Primitives vS vS vS vS vT vT vT vT vC vC vC vC all all all all
Encoding LLC LLC IFV IFV LLC LLC IFV IFV LLC LLC IFV IFV LLC LLC IFV IFV
Pooling static dyn. static dyn. static dyn. static dyn. static dyn. static dyn. static dyn. static dyn.

Avg. Perf. 89.52 91.67 91.90 94.76 94.52 95.00 97.38 97.62 68.81 70.71 77.38 79.05 96.43 96.90 96.90 98.81

TABLE 1: Results for combinations of feature primitives, encodings and pooling. The average recognition
accuracy in % for classification with one vs. rest linear SVMs is reported.

estimated by cross-validation on the training set. The
results indicate that the proposed descriptors are not
only complementary in the sense of their design,
but also in the way that their combination further
improves over the best single feature performance.

When comparing the different feature encodings
on the two datasets it is seen that while both the
LLC and IFV approaches provide good overall perfor-
mance, the higher-order IFVs consistently outperform
the lower dimensional LLC encoding. The benefit is
particularly prominent on the ”In-The-Wild” dataset;
apparently the higher dimensional encoding is espe-
cially advantageous on data with a high degree of
intra-class variations, as e.g. introduced by significant
camera motion.

Table 1 also compares static pooling within a
standard three-level spatial pyramid [13] against the
proposed dynamic spacetime pyramid (dyn.). Note
that this comparison is independent of the under-
lying pooling principle, being either conventional
max- (LLC) or average-pooling (IFV). One observes
that dynamic pooling within the proposed dynamic
spacetime pyramid leads to best performance on both
datasets. Conventional pooling strategies are outper-
formed by a margin of 7.7% and 1.9% for Maryland
and YUPENN, respectively. Note that dynamic pool-
ing always (also for spatial features) increases per-
formance on the stabilized YUPENN dataset where
all observable motion is due to scene dynamics. This
result empirically verifies that, when pooling with
a spatial grid, giving low weights to features with
coarse scale movement facilitates recognition perfor-
mance.

The significant performance gain associated with
dynamic pooling on the Maryland dataset can be
attributed to the significant temporal variations and
the severe camera movement that is present in the
videos of this dataset. Since camera movement gen-
erally manifests itself at coarse temporal scales and
the proposed dynamic pooling method favors pool-
ing without geometric context within the dynamic
pyramid when coarse (coherent) motion is present, it
avoids inappropriate spatially gridded pooling when
image structure drastically changes its position with

LLC encoding

K 50 100 200 400 600 800

dimension 1250 2500 5000 10000 25000 40000

Maryland dataset
vS 60.77 66.15 69.23 73.08 73.85 73.85
vT 56.92 56.92 60.00 58.46 61.54 60.77
vC 50.00 51.54 52.31 52.31 50.00 53.08

YUPENN dataset
vS 89.05 90.71 91.67 91.76 92.38 91.90
vT 89.52 92.62 95.00 95.48 93.33 93.57
vC 67.14 69.29 70.71 73.10 73.10 73.10

IFV encoding

KGMM 10 20 50 100 150 250

dimension 11760 23520 58800 117600 176400 294000

Maryland dataset
vS 73.85 75.38 77.69 76.15 76.15 76.15
vT 59.23 62.31 67.69 70.77 69.23 66.92
vC 57.69 55.38 53.08 54.62 50.77 53.08

YUPENN dataset
vS 94.29 95.48 94.76 95.00 94.76 94.29
vT 98.33 97.14 97.38 97.62 97.38 97.14
vC 80.00 78.33 76.19 75.24 74.52 72.62

TABLE 2: Overall classification accuracy for different
codebook sizes when using LLC and IFV encoded
features pooled via the proposed dynamic pooling
framework.

time. The approach thereby becomes robust to camera
(and other coarse) motions.

Consideration of the YUPENN results shows that
the dynamic pooling advantage is had without com-
promising performance when camera motion is ab-
sent. Here, the dynamic pooling allows aggregation at
finer levels of the dynamic pyramid to more precisely
localize the spatiotemporal image structure. Interest-
ingly, there is even a slight improvement on YUPENN
under dynamic pooling, which may be due to the
fact that coherently moving objects are specifically
matched by the dynamic pooling channels. For exam-
ple, vertically moving visual codes from a waterfall
sequence will be explicitly matched, since these are
favorably pooled within the ÊR|u−d| channel of the
dynamic spacetime pyramid.

Varying the size of the codebook can impact classifi-
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Class HOF [9]+ Chaos [4]+ SOE SFA CSO BoSE C3D DPCF CF DPCF
GIST [15] GIST [15] [5] [27] [12] [13] [53] {vS,vT} {vS,vT,vC} {vS,vT,vC}

Avalanche 20 60 40 60 60 60 90 80 80 90
Boiling Water 50 60 50 70 80 70 90 80 60 60
Chaotic Traffic 30 70 60 80 90 90 90 100 90 100
Forest Fire 50 60 10 10 80 90 80 80 60 90
Fountain 20 60 50 50 80 70 60 60 70 80
Iceberg Collapse 20 50 40 60 60 60 60 50 50 50
Landslide 20 30 20 60 30 60 70 80 60 80
Smooth Traffic 30 50 30 50 50 70 80 80 70 70
Tornado 40 80 70 70 80 90 80 80 80 80
Volcanic Eruption 20 70 10 80 70 80 90 90 90 90
Waterfall 20 40 60 50 50 100 40 70 60 70
Waves 80 80 50 60 80 90 100 100 100 100
Whirlpool 30 50 70 80 70 80 80 70 70 80

Overall 33 58 43 60 68 78 78 78 72 80

TABLE 3: Classification accuracy (in %) for the best performing approaches on the Maryland dataset.

Class HOF [9]+ Chaos [4]+ SOE SFA CSO BoSE C3D DPCF CF DPCF
GIST [15] GIST [15] [5] [27] [12] [13] [53] {vS,vT} {vS,vT,vC} {vS,vT,vC}

Beach 87 30 93 93 100 100 97 100 93 100
Elevator 87 47 100 97 100 97 100 100 100 100
Forest Fire 63 17 67 70 83 93 100 93 93 97
Fountain 43 3 43 57 47 87 83 96 93 93
Highway 47 23 70 93 73 100 97 100 100 100
Lightning Storm 63 37 77 87 93 97 93 100 100 100
Ocean 97 43 100 100 90 100 100 100 100 100
Railway 83 7 80 93 93 100 97 100 100 100
Rushing River 77 10 93 87 97 97 100 100 100 100
Sky-Clouds 87 47 83 93 100 97 97 100 100 100
Snowing 47 10 87 70 57 97 93 97 97 97
Street 77 17 90 97 97 100 100 100 97 100
Waterfall 47 10 63 73 77 83 97 93 87 97
Windmill Farm 53 17 83 87 93 100 100 97 97 100

Overall 68 23 81 85 86 96 97 98 97 99

TABLE 4: Classification accuracy (in %) for the best performing approaches on the YUPENN dataset.

cation performance, as shown in Table 2. The number
of visual words, K, that represents the number of
centroids in the LLC representation, and KGMM, which
denotes the number of mixtures used in the GMM for
Fisher vectors, is varied. The resulting dimension of
the feature vector for a single temporal slice is listed as
well. When increasing the codebook size, performance
increases up to a certain point. Generally, a small
vocabulary size decreases discriminability between
the classes. In contrast, a large vocabulary makes it
difficult to find similar codewords within instances of
the same class, as features describing similar visual
input will be mapped to different codewords. This
point explains the performance decrease for larger
codebooks on the Maryland dataset, because it ex-
hibits higher intra-class variations than YUPENN.

4.2 Comparison with the state-of-the-art
The proposed approach is compared to several oth-
ers that previously have shown best performance in
dynamic scene recognition: GIST [15] + histograms
of flow (HOF) [9], GIST + chaotic dynamic features
(Chaos) [4], spatiotemporal oriented energies (SOE)
[5], slow feature analysis (SFA) [27], 3D ConvNet

(C3D) features [53], and previous work by the authors,
complementary spacetime orientation (CSO) features
[12] and Bags of Spacetime Energies (BoSE) [13].

The principal DPCF representation is the best per-
forming variation considered in Section 4.1: densely
extracted complementary descriptors (spatial vS, tem-
poral vT, and color vC) that are encoded by IFV using
the dynamic pyramid representation. All parameter
choices are given in Section 3.4. For the sake of
further comparison, also considered are variations of
the proposed approach that consider only spatial, vS,
and temporal, vt, features and for the full set of
complementary features (i.e. also including vc), but
using standard (3-level) spatial pyramid pooling, i.e.,
without the dynamic pooling of Section 3.3. Results
are shown in Tables 3 (Maryland dataset) and 4
(YUPENN dataset).

For both datasets, the complete DPCF approach
({vS,vT,vC}) achieves a new state-of-the-art in out-
performing the previous best performers, BoSE [13]
and C3D [53], which were essentially on par. On
the Maryland dataset, the novel DPCF representation
achieves an average accuracy of 80% when coupled
with a simple linear SVM classifier. The proposed
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approach’s 99% accuracy on YUPENN shows that
performance is saturated on this dataset. On a single
class-level, outstanding results are the high accuracies
for the Fountain class, which exhibits huge intra-class
variations in the background and only a small amount
of common foreground (i.e., the fountain itself).

Improvement over BoSE and CSO underlines the
advances of the current approach in comparison to
previous efforts by the authors. Compared to CSO
[12], DPCF increases by 12% and 13% on YUPENN
and Maryland. This underlines the importance of ag-
gregating the primitive features in grids so as to cap-
ture spatiotemporal neighborhood structure as well
as a local encoding and dynamic pooling strategy.
Moreover, DPCF boosts performance of BoSE by 2%
and 3% on YUPENN and Maryland which underlines
the importance of encoding complementary spatial,
temporal and color cues in an IFV representation by
using a dynamic aggregation strategy (Section 3.3).

Improvement over C3D shows the merit of the
approach in comparison to the strongest performing
application of deep convolutional networks to 3D spa-
tiotemporal image processing for scene recognition,
even while maintaining lower complexity, single level
feature extraction.

Interestingly, while the inclusion of color features
in DPCF yields modest overall improved performance
vs. using only spatial and temporal features, {vS,vT},
the amount of improvement varies drastically by
class. As examples: Forest Fire gains 10% on Maryland
and 4% on YUPENN; apparently the colors of fire
are distinctive. In contrast, scenes involving vehicular
traffic, Highway on YUPENN and Chaotic as well as
Smooth Traffic on Maryland, gain nothing and can
even decrease in performance; apparently the partic-
ular color of cars in a given traffic scene is of little use
and can even be confusing in class categorization.

Further useful observations can be made by com-
paring the results for the Complementary Features
lacking dynamic pooling (CF) against the Dynami-
cally Pooled Complementary Feature (DPCF). Here, it
is seen that, especially on Maryland (Table 3), recogni-
tion rates increase for several classes, e.g., Forest Fire
and Landslide, which further underline the benefits
of dynamic pooling in the presence of camera motion.
Also, one again notices that for all classes on the stabi-
lized YUPENN dataset the dynamic pooling increases
recognition rates, most notably for the Waterfall class
where the coherent motion channels of the dynamic
spacetime pyramid cause an increase of 10% in accu-
racy. Improvements here arise owing to the ability of
dynamic pooling to benefit recognition in situations
where primitive components (e.g., localized measure
of water flow) move across time, even in otherwise
static scenes.

Finally, it is interesting to compare performance in
particular with respect to the stabilized vs. unsta-
bilized camera natures of the YUPENN and Mary-

land datasets: For classes with the same label across
datasets (e.g. Forest Fire, Fountain, Waterfall) as well
as highly similar classes (e.g. Highway and Smooth
Traffic), while benefits are had from dynamic pooling,
performance remains compromised in the presence of
unstabilized camera motion.

4.3 Class confusions

Confusion tables for the proposed approach are
shown in Table 5. Again, the proposed DPCF rep-
resentation consists of densely extracted complemen-
tary descriptors that are dynamically encoded by IFV
using the proposed dynamic pyramid representation,
parameter choices as given in Section 3.4. It can be
observed that most of the confusions are between
visually similar scene classes. For example, on Mary-
land, Smooth Traffic is confused with Chaotic Traffic.
On YUPENN, confusions only occur between highly
similar classes, e.g. Fountain and Waterfall, showing
dynamic water textures.

5 CONCLUSION

This paper has presented a complete system for dy-
namic scene recognition that tackles video analysis
in a principled and well-founded manner in three
main steps: primitive feature extraction, feature en-
coding and dynamic pooling. The entire process-
ing pipeline is structured by an explicit modeling
of feature complementarity, distinguishing between
spatial, temporal, and color primitives (vS,vT,vC).
The system has been thoroughly evaluated on the
two current benchmark datasets for dynamic scene
recognition and yields the currently best performance
on both datasets. This performance gain is due to (a)
careful design of the complementary features, which
is supported by biological evidence in parvocellu-
lar, magnocellular and konio layers of natural visual
systems, (b) careful selection of encoding techniques
and (c) a novel dynamic pooling approach, which
greatly increases performance when camera motion
is present, without compromising performance when
camera motion is absent.

A detailed analysis of the experimental results re-
veals that, on the complementary feature level, spa-
tial primitive features, vS, perform best on videos
with large camera motion (Maryland “In-The-Wild”),
but temporal features, vT, are better on stabilized
videos (YUPENN dataset). Significantly, however, the
combination of all three complementary features out-
performs each individual feature type, a result that
underlines the complementarity of spatial appearance,
temporal dynamics and color. At the encoding step,
for all possible combinations of primitive features, Im-
proved Fisher Vectors (IFV) consistently outperform
Locality-constrained Linear Coding (LLC). Further-
more, it has been found that dynamic pooling can
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TABLE 5: Confusion Matrices for DPCF for the Maryland (left) and YUPENN (right) dataset. The columns
show the predicted labels of the classifier, while the rows list the actual ground truth label.

adapt to global as well as local motion and always
yields better results than static pooling.

Regarding the two benchmark datasets for dynamic
scene recognition, the stabilized YUPENN dataset is
better structured and balanced with respect to size
and length of individual video clips than the less
systematic video collection in the Maryland dataset.
However, the Maryland dataset offers the additional
challenge of camera motion. As expected, recognition
rates are much better on stabilized videos, as com-
pared to cases of significant camera motion. Indeed,
an overall recognition rate of almost 99% shows that
experimental validation on the YUPENN dataset has
reached its limits. These observations emphasize the
need for a new challenging dataset that contains more
classes and more videos, while being well-structured
and balanced with respect to the size and length of
all individual video clips as well as to the cases of
stationary and moving cameras.

The outstanding performance of the presented
spacetime recognition framework on dynamic scenes
suggests application to a variety of other areas, such
as event retrieval and video indexing as well as object
and activity localization. Indeed, examples suggesting
the generality of the approach already are available.
Strong performance in dynamic texture recognition
was documented for an ancestor of the current ap-
proach [3] that relied on only temporal features, vT,
and pooling at the top level of a spatial pyramid
for strictly global aggregation. Somewhat complemen-
tarily, an action recognition approach [54] has been
presented that exploits more locally defined saliency-
based dynamic pooling of vT.
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