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Abstract

A no-reference perceptual sharpness metric is proposed for sharpness assess-
ment as overall quality indicator in image and video. We also introduce an
alternative sharpness metric, able to assess perceived image sharpness, insen-
sible to local blur distortions. The essential idea of our work is to analyze the
edge spread in images and the affect on human blur perception.
Evaluation is performed by using several quality databases and appendant sub-
jective scores. By comparing with state-of-the-art no-reference sharpness met-
rics we show the advantage of our approach. The proposed algorithms correlate
well with the subjective quality ratings. On uniformly blurred content the met-
ric is even competitive to well-established full-reference metrics. We demon-
strate stable results for images with diverse content and show the superiority
of the proposed metric compared to latest no-reference metrics in the litera-
ture. Another advantage of our approach is the low computational complexity,
making real-time video sharpness estimation possible. The experiments were
conducted on distorted images, including Gaussian blur, JPEG-2000 compres-
sion and white Gaussian noise.
The research and implementation of this work has been carried out at JOAN-
NEUM RESEARCH Forschungsgesellschaft mbH, DIGITAL- Institute for In-
formation and Communication Technologies. Prototyping was performed in
MATLAB and a method to measure the sharpness in video frames was imple-
mented in C++.

Keywords: sharpness, blur, no-reference, sharpness metric, blur metric,
image/video quality assessment, perceptual, human visual system, visual qual-
ity
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1 Introduction

Research in image/video quality assessment (QA) has emerged in the last
years, substantial effort has been dedicated to the development of new image
QA methods. There are numerous applications for automatic machine vision
quality estimators. A possible field of application is the media production,
delivery and archiving process, where humans have to monitor the contents’
visual quality. The Human Visual System (HVS) is able to quickly judge the
quality of visual content even if the original image or video is not present.

Subjective quality assessments provide the most reliable results, because
in many applications the end user is the human observer. In practice, these
methods are too costly and time-consuming. It is obvious that objective tech-
niques are needed to predict the video/image quality automatically. So called
perceptual metrics try to estimate the quality as perceived by an averaged
viewer.

Objective metrics can be categorized, based on the presence of a distortion-
free original image for comparison. Full-reference metrics need the distorted
image and the original image as input. Common metrics are the Mean
Squared Error (MSE) or the Peak Signal-to-Noise Ratio (PSNR). Those
metrics are simple to calculate, however they do not represent the perceived
visual quality very well. Many approaches have been developed, involving
the characteristics of the HVS. A perceptual alternative of those two basic
methods is the Structural SIMilarity index (SSIM) [1], exhibiting consistency
with the qualitative visual appearance. Several full-reference quality assess-
ment algorithms are evaluated in [2]. Furthermore an extensive classification,
review and performance comparison of recent video QA Methods, following
the ITU-T recommendations for objective quality evaluation, can be found
in [3].

Reduced-reference QA methods work with only partial information of the
original visual signal available, i.e. a reduced feature dataset. Obviously in
most of the practical applications the reference signal is unavailable. Hence
no-reference metrics are needed to blindly quantify the image distortions, if
no knowledge of the original image is available.

Numerous video QA methods and metrics have been proposed in the lit-
erature, including several full-reference approaches, showing promising cor-
relation with the human visual perception. Contrary most no-reference QA
techniques do not correlate well with perceived quality, and therefore continue
to be areas of active research. A typical application for image quality metrics
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is the media production and delivery process [4]. Broadcasters have to mon-
itor video quality while recording, after editing or compression and before
transmission. At recording no original reference image is available, therefore
no-reference metrics could execute this job. After media editing or com-
pression a full-reference metric could be applied to check the quality before
transmission. If real-time assessment is required, e.g. at the receiver, with no
original video data available, no-reference methods with low-computational
complexity are needed.

No-Reference metrics are typically designed for a specific type of distor-
tion (e.g. blur, noise, ringing, blocking), while full-reference metrics are able
to assess the effect of several distortions. Various distortion types may occur
during acquisition, processing, transmission and storage of digital content.

Our work concentrates on blur assessment in images, the most common
distortion type in digital image/video processing. To extend this for digital
video, blur can be estimated in every frame, or rather in every n-th frame.
Objective QA algorithms face many challenges. One of them is to be inde-
pendent from image content. Another one is to distinguish between image
features and impairments. Artifacts can occur in all technical image/video
processing stages applied to the analogue content up to its digitization. A de-
tailed overview of different impairments, generated in video processing cycle
can be found in [4].

Finally the visual content is interpreted by the HVS in a way that can not
be modelled computational (at least at the current state of research). The
HVS is able to estimate blur well. Although, due to the high complexity of the
HVS and cognitive aspects of the brain, it is not shown how this mechanism
works. The HVS recognizes image impairments, by establishing a reference
to the observers’ knowledge about natural images. Human observers detect
blur so well, because of their imagination of the sharp image in contrast to
the blurred one.

We consider sharpness as an effect of blurring, it is multiplicative inversely
proportional to image blur. Two metrics, differing in the feature extraction
process are presented. One estimates perceptual sharpness with respect to
the overall image quality, the other assesses perceptual sharpness regardless
of perceptive quality. The advantage of the latter method is a more precise
prediction of the relative sharpness. A possible application would be a pro-
cess, where sharpness is just altered slightly, e.g. broadcasters investigating,
if the received video content has been upscaled.

Our method follows the idea of measuring the edge widths, by analyzing
the spread of the edge slopes, proposed by Marziliano et. al in 2002 [5].
We have chosen this idea because of its simplicity and low computational
complexity, to make real-time sharpness estimation possible. Actually many
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sharpness/blur metrics (e.g [6, 7, 8, 9]) base on this method.
The proposed metric is compared against four no-reference sharpness met-

rics which are well known in the literature. For performance comparison two
publicly available subjective image databases are used. A subjective evalu-
ation is done by humans rating the content. The result is a mean opinion
score (MOS), representing the quality rated by different subjects.

This thesis is organized as in the following. Section 2 provides an overview
of recent sharpness metrics. We also present two basic methods using local
statistical features, followed by a description of the methods we used for
evaluation. In section 2.3, some issues of current no-reference metrics are
demonstrated. Section 3 gives a definition of our sharpness metric based on
local gradient analysis. Experimental results, using different quality assess-
ment databases with a large set of subjective scores, are provided in section
4. The thesis is concluded in section 5.

2 Overview of Existing Metrics

Several objective no-reference metrics exist in the literature. Some are trans-
form based, knowing that sharp edges increase the high frequency compo-
nents, while blurring acts like a low pass filtering in the frequency domain.
Spatial domain methods extract local or global image features and evaluate
specific statistical properties, e.g. variance, autocorrelation or edge spread.
Before using the edge spread as main feature, we also tested other local
spatial features for sharpness measurement.

In this section we will first present these basic methods using autocor-
relation and variance features. Followed by a description of the existing
no-reference metrics used for comparison to our main approach, which is
presented in section 3. A more comprehensive review of existing objective
no-reference sharpness metrics can be found in [8].

2.1 Proposed Basic Metrics

2.1.1 Autocorrelation Metric

Autocorrelation can be used to measure the similarity of the image with itself.
The autocorrelation function allows to find repeating patterns in images.
Blurred images (with large smooth regions) have high autocorrelation values,
while sharp images contain less correlated patches. A very basic method
to determine the sharpness in an image is to compare neighboring image
patches. Blurring leads to an increase in correlation between adjacent pixels.
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Our method divides the image into 16 × 16 blocks and computes the cross-
correlation of every 16× 16 block with its’ 8-blocks-neighborhood.

2.1.2 Variance Metric

The observation of sharp images having greater variation in pixel values
than blurred ones can be used to measure the sharpness. Another benefit of
variance-features is the robustness to noise. In our implementation we divide
the image into 16 × 16 blocks first, then the local variance of each block is
calculated by

σ̃2 =
n∑
x=0

m∑
y=0

(B(x, y)− B̄)2 (1)

B̄ denotes the mean of the block B. A sharp block tends to have high
variance, while smooth, blurred blocks exhibit low variance. The global
sharpness of the image is determined by averaging the local variances. Only
15% of the sharpest blocks have influence on the result.

2.2 Existing No-reference Sharpness Metrics

We compare the performance of our metric with popular no-reference sharp-
ness metrics, two located in the frequency domain and two spatial domain
metrics.

One metric is a transform based method, proposed by Bovik et al. [10],
using statistics of the discrete wavelet transform (DWT) coefficients in nat-
ural images, to produce quality scores for JPEG2000 compressed images. A
more recent sharpness metric, located in the wavelet transform domain, an-
alyzing the local phase coherence (LPC) of complex wavelet coefficients is
proposed in [11]. Ferzli et al. [8] and Narvekar et al. [9] propose spatial
domain sharpness metrics, based on a concept of just noticeable blur. Their
algorithms base on the analysis of edges and adjacent regions in images pro-
posed by Marziliano et al. [7].

2.2.1 Spatial Domain Metrics

A No-Reference Objective Image Sharpness Metric Based on the
Notion of Just Noticeable Blur (JNB)

The JNB is conceptualized by reverse engineering on the human visual sys-
tem. Using studies of human blur perception, Ferzli et al. [8] model the
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degree of blurring in an image patch by

PBLUR(ei) = 1− exp

(
−
∣∣∣∣ w(ei)

wJNB(ei)

∣∣∣∣β
)
. (2)

w(ei) is the measured edge spread as presented in [7], wJNB(ei) is the ”just
noticeable blur” width, which is obtained in subjective experiments by using
a blurred edge with different Gaussian standard deviations. By blurring
the edge width increased and a blurring was noticed by the subjects, in
dependence to the local edge contrast C, at following widths:

wJNB =

{
5, if C 6 50,

3, if C > 50.
(3)

Ferzli et al. approximate the human foveal region with 64×64 image blocks.
They calculate PBLUR for every block, if more than 0.2% of the total number
of the pixels in the block were classified as edges. The probability of detecting
a blur distortion in each of those blocks, PBLUR, is used in a Minkowski metric
to derive an overall image sharpness.

A No-Reference Image Blur Metric Based on the Cu-
mulative Probability of Blur Detection (CPBD)

This method extends the JNB Metric, by only using blocks with

CPBD = P (PBLUR 6 PJNB). (4)

Hence, only image patches which a human subject would not recognize as
blurred are used for this metric.

2.2.2 Frequency Transform Domain Metrics

Blurring can be considered as a low pass filtering of the image, higher spec-
tral components are suppressed in blurred images. Sharp images tend to
have more fine detail, resulting in an increase of the high frequency compo-
nents. Although noise also increases the high frequency components. This
oppositional effect makes methods based on this property very susceptible to
noise. One requirement for our metric is a low noise susceptibility. For that
reason we locate our metric in the spatial domain.
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No-Reference Quality Assessment Using Natural Scene Statistics:
JPEG2000 (NSS)

Bovik et al. [10] propose a method to assess image quality of JPEG2000
compressed images. This compression is based on the DWT. Due to quanti-
zation small DWT coefficients become zero, resulting in ringing and blurring
artifacts. High compression causes a higher probability of zero coefficients
in different subbands. Bovik et al. gather statistics of the DWT coefficients
of JPEG2000 compressed (natural scene) images. The main parameters are
C, the wavelet coefficients’ magnitude and P, the linear predicted magnitude
of the coefficient. They expect natural images to have significant P and C
values, which get ’insignificant’ by the compression process. The method is
especially designed for JPEG2000 compressed images, hence it exhibits a low
performance for other blur types.

No-Reference Image Sharpness Assessment Based on Local Phase
Coherence Measurement (LPC-SI)

Assuming that blur causes a disruption of local phase i.e. it yields to a loss
of phase coherence. Wang et. al [12] demonstrate that precisely localized
features, e.g. sharp edges, cause a strong local phase coherence in the complex
wavelet transform domain. Typical blurring means a convolution with a low
pass filter, averaging out rapid changes in intensity. A convolution with such
a filter wont change the phase information in the global Fourier domain.
Wang et. al show, that local phase information changes. An auspicious
sharpness metric, based on LPC was proposed recently [11]. It uses the effect
of the LPC exhibiting a constant relationship near sharp image features,
e.g. edges. This relationship is disrupted by image impairments that affect
sharpness.

2.3 Issues of Existing No-reference Sharpness Metrics

The main concern in existing no-reference sharpness metrics is the high sus-
ceptibility to altering image content, demonstrated for the JNB metric in
figure 1. This issue is also shown in figure 2 where the correlation of the
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Figure 1: 29 reference images of the LIVE image quality database, low-pass
filtered by using a circularly symmetric 2-D Gaussian kernel with a standard
deviation of σ, resulting in 174 images. Each data point represents an image.
The high variance of the JNB Metric for diverse image content is shown. The
untouched parrots image (σ1 = 0) is assessed with approximately the same
sharpness as the σ2 = 2.17 sailing image and the σ3 = 2.73 blurred lighthouse
image. Our proposed metric assesses a sharpness of s1 = 0.68, s2 = 0.16 and
s3 = 0.12, respectively
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JNB, as well as CPBD Metric with the subjective tests are shown. The
CPBD Metric achieves better performance than the JNB Metric, but also
struggles with altering image content. Another disadvantage of the CPBD
method is the rapid descent of the metric for increasingly blurred content.
More precisely, in Figure 10 on page 26 it is shown that the CPBD Metric
converges to zero for nearly all blurred LIVE database images with σ > 2
pixels. This is because no more image patches with PBLUR 6 PJNB exist in
the image, i.e. no more patches, which human observers would consider as
’not blurred’. PJNB denotes the degree of blurriness, which is just noticed as
blurred by a human observer. Hence the metric can not be used for medium
to highly blurred images.

0 2 4 6 8
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20

40

60

80

100

JNB Metric

M
O

S
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Figure 2: Scatter plots of JNB and CPBD Metric and mean opinion scores of
the LIVE Gaussian blur database. A high variance in the 29 reference images
(MOS = 100) can be observed in both plots. The CPBD metric shows a
better performance, though it non-linearly saturates to zero for images with
a MOS lower than ≈ 40).

The same issue can be found in the no-reference sharpness metric, based
on local phase coherence (LPC-SI). A similar saturation is visualized in the
scatter plot in [11], on page 2436, figure 3. Both, the CPBD and the LPC-SI
metric, assess a sharpness of zero for images with subjective mean opinion
scores of ≈ 40%.

As these metrics provide the best results for no-reference sharpness/blurriness
measurement at the current state of research, it is obvious that a more ac-
curate method for sharpness estimation in image and video is needed.
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3 Proposed Sharpness Metric Based on Local

Gradient Analysis

3.1 Relevant Feature Extraction

Our assumption of all image distortions being uniformly distributed, in ev-
ery color channel, is sustained by the effect shown in [13]. The MSE vectors,
each vector having 3 (R,G,B) dimensions, of the proposed full-reference MSE-
metric [13] concentrate around a R = G = B line. Therefore we apply our
metric in the luminance component only. Note that all luminance values in
this document refer to 8 bit images, i.e. 256 grey-levels.

It is important to locate appropriate measuring points, representing the
relevant edges in the image. The main idea is to measure the spread of all
edges detected by use of a Sobel filter (horizontal Sx and vertical Sy) [14].
If no edges are detected, e.g. for blackframes in video, a sharpness value of
zero is assigned.

Gx = Sx ∗ I =

1 0 −1
2 0 −2
1 0 −1

 ∗ I (5)

Gy = Sy ∗ I =

 1 2 1
0 0 0
−1 −2 −1

 ∗ I (6)

By combining these two results, we get the magnitude of the gradient, i.e.
the rate of intensity change at each point in the image.

G =
√
G2
x +G2

y (7)

A threshold is applied to the magnitude. For performance increase the square
root wont be applied and the threshold is squared.

A good predictor for human sharpness perception can be obtained, if the
sensitivity threshold of the Sobel method is chosen adaptively, so only the
most significant edges in the image are measured. By taking the mean value
of the magnitude into account, the threshold can be computed by

threshadaptive = α
√
Ḡ, (8)
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where Ḡ denotes the mean of the gradients magnitude and α is a scaling
factor. In our experiments we set the parameter to α = 2. The adaptive
threshold leads to a focus on edges with high gradient magnitude (in relation
to the magnitudes’ mean). If the metric is used as an overall quality predictor,
all reasonable edges have to be analyzed. The reason is that artifacts, induced
by image compression, e.g. blur and ringing in JPEG2000, do not occur
homogeneous, i.e. the whole image is not degraded uniformly.

Therefore a constant Sobel threshold of thresh = 2.3 is applied for
our second metric. The result of the Sobel filtering and thresholding of a
JPEG2000 compressed image can be seen in figure 3. Even with high com-
pression some regions in the image stay sharp, e.g. the roof of the house in
figure 3(a). So a human observer would typically rate the perceived sharp-
ness of the image as ’fair’, due to its sharp regions. While when assessing the
perceived quality of image 3(a), one would judge it as ’poor’. This is because
of humans tend to assess the sharpness based on the sharpest region in the
image. Hence the threshold after applying the Sobel filter is an important
parameter for our metric and we derive 2 metrics:

• Metric 1 - predictor of perceived image sharpness.
→ Adaptive Sobel thresholding (8)

• Metric 2 - predictor of overall perceived image quality, characterized
by the severity of image blur.
→ Constant Sobel thresholding

After thresholding a thinning process is performed, to get a binary edge im-
age, providing the measuring points for our metric. The thinning process can
be considered as a non-maximum suppression, where the local neighborhood
across the magnitude is analyzed. Because edges are expected to continue
along an outline, values smaller than the neighbors are preferably suppressed
if the non-maximum points reside perpendicular to the edge direction, rather
than parallel to the edge.

We apply a hysteresis threshold, with a lower threshold set to 1
3
· thresh.

The hysteresis thresholding immediately rejects values below the lower thresh-
old, but accepts points between the two limits, if they are connected to pixels
with strong magnitude. Figure 3(b) shows the gradients magnitude, after ap-
plication of an adaptive threshold (8) and thinning. In figure 3(c) a constant
threshold was applied before thinning.
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(a)

(b) (c)

Figure 3: Painted house image of LIVE image quality database, demon-
strating the effect of different gradient magnitude thresholds: (a) JPEG2000
compression with a bitrate of 0.24 bits/pixel. (b) thresholded G using equa-
tion (8). (c) G after applying a constant threshold of 2.3. Image (a) has a
mean opinion score of 44%, rated by 54 observers. Assessed sharpness is 0.64
by Metric 1 and 0.33 by Metric 2.
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3.2 Measuring Edge Widths

Before measuring the edge widths, the gradients’ direction has to be deter-
mined. For that purpose the horizontal and vertical pixel differences are
calculated. The resulting images Ix = ∂I

∂x
and Iy = ∂I

∂y
form the gradient

vectors in each point of the image. The angle of the gradient is calculated by

Φ = arctan

(
Iy
Ix

)
. (9)

At every measuring point the closest local extrema to the edge pixel are
found by iterating along the gradient, perpendicular to the edge. The edge
width is defined by the pixels between the local minimum and maximum.
Gradients are measured horizontal and vertical, with an angle tolerance of
∆φ. Measuring the width of the diagonal edges resulted in a performance
decrease. The reason is assumed to be the larger quantization step-width
(
√

2) of diagonal pixels, compared to a spacing of one between pixels in
horizontal/vertical direction.
The final edge width is computed by

w =
wup + wdown
cos(∆φ)

, (10)

where wup, wdown are the pixels between the detected edge and the local maxi-
mum or minimum, respectively. ∆φ denotes the angle difference between the
gradients’ direction and the measured direction, e.g. if we measure a verti-
cal edge with an angle of φ = 93◦, then ∆φ = 3◦. Though gradients with
∆φ > ∆φmax are not measured at all. In our experiments we set this param-
eter to ∆φmax = 8◦. We ignore all edges at the image borders (i.e. indent
of 32 pixels). Additionally a width is rejected, if the corresponding gradient
starts or ends at an image border. The iteration process, starting at the edge
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pixel detected by the Sobel operator, is illustrated in figure 4. The figure also
shows, that we allow minor intensity changes (maximum luminance change
of 2) against the gradients’ slope, two for each measurement. Additionally,
after the gradients’ slope changes, the added width is rejected if the next
extrema is found close(6 2 pixels) to the first extrema.

Pmax Pmin

w

rejected maximum

2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

Pixel

In
te

n
si

ty

detected edge pixel

Figure 4: Image intensity curve along the gradient. Pmax, Pmin represent the
detected local maxima, w the edge width measured. The dotted red line
between pixel 11 and 12 denotes no intensity change along the gradient. The
green loosely dotted line denotes a intensity change against the gradients
direction.
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3.3 Subpixel Accurate Local Extrema Estimation

The spacing of one between each pixel limits the precision of the local ex-
trema estimation. So we added a subpixel-accurate approximation of the
local extrema by fitting a polynomial of degree 2 and use of the first deriva-
tive. This procedure is illustrated in figure 5 for the pixel intensities of 190,
220, 210 and 100, 220, 210 respectively.
It is illustrated that the difference between the maximum pixel and the es-
timated maximum increases proportional to the local slope of the gradient
(d2 > d1). After testing this feature, our results showing the correlation to
the mean opinion score of different human subjects, diminished. This is ex-
plained by the human visual system perceiving edges with a high change of
intensity(e.g. 100 to 220) sharper than low changes in intensity (e.g 190 to
220).

Hence we did not add d to our edge widths, but subtracted it, making a
higher local gradient slope result in a smaller (sharper) width. This mod-
ification showed a higher correlation with the human perception of sharpness.

1 1.5 2 2.5 3
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maxe

d1

Pixel
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1 1.5 2 2.5 3
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d2

Pixel
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Figure 5: Subpixel-accurate extrema estimation, three pixel neighborhood.
d1 and d2 are the differences from the maximum pixel to the estimated max-
imum maxe. The maximum approximated by an interpolated polynomial.
Note that maxe is always closer to the highest of the two neighbor pixel
values.
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3.4 Modeling the Human Perception of Acutance

Motivated by the observation of the HVS perceiving edges with high contrast
as sharper, we refine our metric by taking the gradients slope into account.
The slope is determined by

slope =
Imax − Imin

w
. (11)

Where Imax and Imin denote the local extrema along the gradient and w is
the width, i.e. the amount of pixels between Imax and Imin.

The measured edge widths are decreased in proportion to the slope by

wnew =

{
w − slope

δ
, if w > 2,

w otherwise,
(12)

δ specifies the impact of the gradients’ slope. In our experiments we used
values in the range of δ ∈ [150, 800] and for all results shown in this paper
we used the parameter δ = 500.

The smallest possible edge width occurs if the gradients’ local minimum
and local maximum are neighbor pixels (w = 1). To imply the Just Notice-
able Difference (JND) of the HVS, we recalculated the widths only for w > 2.
The JND is defined as the smallest difference between two levels of a partic-
ular sensory stimulus (e.g. edge width, in respect to the two intensity levels)
to produce a noticeable variation in sensory experience. In [8] a subjective
test procedure was realized, estimating that an edge is perceived as blurred
by the HVS if the width is greater than 5 pixels for a contrast smaller than
50, and 3 pixels for a higher contrast. For that reason and because of the
slope being contrast-dependent, we only recalculated edges with a minimum
spread of w > 2.

Overall the attempt resulted in an increase in correlation with the sub-
jective ratings, especially the linear relationship between our metric and the
subjective scores elevated. But also the variance of the measured sharpness
for images with diverse content (but the same sharpness) increases slightly,
this is illustrated in figure 6. If robustness to alterable content is the main
requirement, this feature should not added to the metric.

We have also experimented with the slope of a fitted first order polyno-
mial to all values of the gradient. This yielded to similar results, at higher
computational complexity.
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Figure 6: Scatter plot, showing the determined sharpness of the 174 Gaussian
blurred images of the LIVE Database (including 29 reference images with
σ = 0 ). The left scatter plot shows the metric without taking acutance
into account. In the right plot local edge contrast change was considered as
described in sections 3.3 and 3.4. The parameter δ = 300 was used.
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3.5 Block Based Calculation

The image is divided into 32×32 blocks to quantize the focused region and to
deduce local sharpness values. The representative edge width for each block
is calculated by averaging all measured widths in a block. Block B is only
processed further if the following condition is fulfilled:

wsum > wmin (13)

where wsum is the sum of all widths in B and wmin is a threshold, we tested
with wmin ∈ [2, 5], and used a value of 2 for the final metric. This constraint
requires more than one narrow edges to be measured in a block. Sharp edges
are able to generate a higher relative error due to the quantization step of
one. Hence (13) increases the robustness to noise.

The local sharpness in all of the image blocks is then converted to a
final sharpness value by selecting only the sharpest blocks. The average
widths of all n blocks, meeting requirement (13), are sorted and only the k
sharpest blocks are used to determine the sharpness. Parameter k is set to
k = d0.15 · ne and k = d0.45 · ne for Metric 1 and Metric 2, respectively.
Focusing on the sharpest blocks ignores out of focus regions and increases
perceptual sensing.

The overall image sharpness is finally deduced by inverting the mean of
the k sharpest average block widths

s = k
k∑
i=1

1

w̄i
, (14)

k represents the number of sharpest blocks and w̄i is the average of all mea-
sured edge spreads in block Bi.

Figure 7(a) illustrates the local sharpness estimation of the 512×768 monarch
image, obtained from the LIVE image quality database, having different blur
amounts in figure 7(c)-(d). The results of the proposed metric, as well as the
mean opinion scores are listed in Table 1.
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(a) (b)

(c) (d)

Figure 7: Localized block based sharpness estimation, the intensity of the red
blocks in (a) correspond to the sharpness of the underlying image patches.
(b) Original monarch image convoluted by using a 2-D Gaussian kernel with
standard deviation σ (d) 0.9 and (d) 1.85, respectively. The corresponding
mean opinion scores of 24 observers are listed in table 1.

σblur Metric 1 MOS

(b) 0 0.59 100
(c) 0.9 0.31 76.76
(d) 1.85 0.17 58.18

Table 1: Performance of the proposed metric on the LIVE monarch image.
A monotonic decrease of the metric, with increasing blur amount σblur is
shown.
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4 Experiments

Due to subjective experiments being costly and time consuming, the val-
ues provided in two well known quality assessment databases are used for
evaluation. We compared our results with several other novel metrics. The
algorithm performances were either taken from the correlating papers or the
publicly available implementations.

4.1 Subjective Quality Assessment

For comparison of the different metrics, subjective quality scores are needed.
In this work we used the Mean Opinion Score (MOS) and Differential Mean
Option Score (DMOS) values, provided in the LIVE Database [15]. The
MOS is determined by showing the subjects the original and the distorted
image. Then the user has to rate the quality on a 5 to 1 scale: excellent,
good, fair, poor and bad. The more ratings a human subject performs, the
more constant his rates get. Although the tests should not take too long,
because of lack of concentration. DMOS is the difference between the MOS
of the original image and the MOS of the degraded image. Typically subject
rejection is performed on the raw opinion scores, if more than k evaluations
of a subject were outliers.

4.2 Subjective Visual Quality Assessment Databases

The reference images, used for a quality assessment database, need to fulfill
some requirements. Typically the images have to provide a high variety in
image content. Particularly local image characteristics, like contrast and in-
tensity should vary a lot. For example some images should contain a high
amount of different textures, smooth regions or sharp edges. A short descrip-
tion of the two databases, used to test the metrics’ performance, is provided
in this section.

4.2.1 LIVE Quality Assessment Database - LIVE[15]

Prof. Alan C. Bovik, The University of Texas at Austin, USA

The database consists of 29 images taken primarily from the Kodak Loss-
less True Color Image Suite test set. The reference images were distorted by
JPEG2000, JPEG, White Gaussian Noise (WGN) and Gaussian blur. All dis-
tortions were applied in the RGB components. Our performance evaluation
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was realized on the 174 Gaussian blurred images, filtered by using a circular-
symmetric 2-D Gaussian kernel of standard deviation σ. We also evaluated
the metrics’ susceptibility to noise, using the 174 WGN images, distorted
with WGN of standard deviation σ. Because of the JPEG2000 compression
causing mainly blurring and ringing artifacts, the 227 JPEG2000 images,
compressed with different bitrates, were also used to measure the perfor-
mance. 24, 23 and 54 observers participated in the subjective tests, for the
blurred, noisy and JPEG2000 compressed images, respectively.

4.2.2 TID2008 Database [16]

Nikolay Ponomarenko, National Aerospace University of Ukraine

This database consists of 25 reference images, distorted in 17 different
types, with 4 different levels for each type of distortion. This results in
1700 test images, therefore it is the largest database for evaluation of quality
metrics. As reference images, similar to the LIVE database, the images of
the Kodak test set were used. The images were cropped to a size of 512×384
pixels. Additionally an artificial image was added, containing objects with
different characteristics and texture fragments.

Mean opinion scores have been obtained in experiments with more than
800 observers participating. The relevant distortions for our experiments
were Gaussian blurred images and JPEG2000 images.

4.2.3 Database Comparison

While the TID2008 database offers scores, determined by plenty of subjec-
tive experiments, the experiments of LIVE were conducted under normalized
viewing conditions. The viewing distance was kept at about 2-2.5 times of
the screen height, where 21-in CRT monitors displaying at a resolution of
1024× 768 pixels were used [15].

The LIVE database also provides a higher number of distortion intensi-
ties, as shown in figure 8. Where the woman-hat image of the LIVE database
and the cropped version of the image, used in the TID2008 database, are
shown. The images are blurred with different blur amounts. Mean opinion
scores were conducted in various subjective experiments. Note that LIVE
database provides difference scores (DMOS), and therefore associates the
score for the original image with the scores of the degraded versions.
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(a) MOS = 100 (b) MOS = 76.85 (c) MOS = 72.24

(d) MOS = 63.10 (e) MOS = 53.11 (f) MOS = 40.57

(g) MOS = 69.02 (h) MOS = 61.90

(i) MOS = 54.88 (j) MOS = 41.18

Figure 8: Blurred woman-hat image of LIVE database (a)-(f) and TID2008
database (g)-(j) with subjective MOS. (MOS = 100 - DMOS for LIVE)
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4.3 Performance Measures

We have chosen the evaluation procedures suggested in the Video Quality
Experts Groups’ (VQEG) [17] work. They suggest a non-linear pre-mapping
of the predictors’ results to the subjective ratings. Unlike than in other
public evaluations, we kept the linear correlation coefficient in our evaluation
to provide a more critical judgement. The following performance measures
are used to evaluate the proposed method.

• Pearson Correlation Coefficient

The LCC describes the linear dependence of two variables (i.e. the ob-
jective and subjective scores) and therefore it is a sign for how accurate
a prediction is. The LCC between two data sets x and y is given by

LCC =

∑n
i=1 (xi − x̄)(yi − ȳ)√∑n

i=1 (xi − x̄)2
√∑n

i=1 (yi − ȳ)2
. (15)

For the following performance measures a prior non-linear mapping on
the predicted scores is performed.

To get a linear relationship between the objective scores and the sub-
jective ratings a non-linear mapping function, as suggested by the
VQEG [17], is used. In order to make our metric comparable with
current state-of-the-art no-reference metrics, evaluated in [9], the four-
parameter logistic function of [9] was applied for the non-linear fitting
procedure

MOSpi =
β1 − β2

1 + e
(
metrici−β3
|β4|

)
. (16)

MOSpi is the predicted metric value metrici, after non-linear regression
analysis. The model parameters β1−β4 are chosen for a best fit to the
corresponding subjective MOS scores.

• Nonlinear Pearson Correlation Coefficient

NLCC is the linear correlation coefficient, after non-linear regression
analysis. Therefore it also provides an indication of prediction accuracy.
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• Spearman Rank-order Correlation Coefficient

Expressing the monotonicity of the prediction, the SROCC tries to
describe the relationship between the objective/subjective results, by
use of a monotonic function. The Spearman coefficient ignores the
relative distance between the data, only the ordering of the prediction
is checked. Hence the SROCC can be considered as a LCC between
the ranks of the two data sets.

• Root Mean Square Error and Mean Absolute Error are given by

RMSE =

√√√√ 1

n

n∑
i=1

(γi − γ̂i)2 (17)

and

MAE =
1

n

n∑
i=1

|γi − γ̂i.| (18)

The RMSE is the square root of the sum of squared residuals. A
residual of a sample is the difference between the sample value γi (e.g
MOS) and the predicted value γ̂i. While the MAE is a linear score,
weighting individual differences equal in the average, the RMSE adds
high weights to large errors, i.e. outliers. MAE and RMSE also describe
the predictions’ accuracy.

• Outlier Ratio (OR), is the fraction of predictions outside of the interval
[MOS − 2σ,MOS + 2σ] to the total number of predictions. MOS is
the mean opinion score and σ is the standard deviation of the opinion
scores for a single image. The OR expresses the consistency of the
prediction.
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4.4 Content Dependency

Being robust to alterable content is one of the most important requirements
for image sharpness metrics. A full robustness for a metric means, that an
undistorted image A, blurred by σgblur, and image B, blurred by σgblur, re-
sult in the same sharpness s. Figure 9 shows several images, with different
contents. In figure 10 the 174 images of the LIVE Gaussian blur database
and the corresponding sharpness, determined by different metrics, is shown.
A content-dependence-comparison of the proposed metric (without consider-
ation of acutance), as well as CPBD and JNB metrics is illustrated. All of
the 174 LIVE Gaussian blur images are measured and plotted in 10. Many
different images have similar blur amounts σ. And, of course, all of the 29
reference images have a blur value of σ = 0. The Sum of Absolute Distances
(SAD) to an interpolated polynomial, after normalizing the metric scores to
[0, 1], is given as a performance measure.

(a) (b)

(c) (d)

Figure 9: Diverse content in LIVE database (a),(b) and TID2008 database
(c), (d) is an artificial image of TID2008 with different texture fragments.
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Figure 10: LIVE gblur measures with SAD to an interpolated polynomial.
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4.5 Noise Susceptibility

To assess the susceptibility to noise, the proposed metric was tested on the
174 White Gaussian Noise images of the LIVE database. Figure 11 illustrates
the WGN LIVE images and the measured sharpness. A noise robust metric
would predict the same sharpness for every image.
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Figure 11: LIVE noise measures, 174 distorted images with WGN of standard
deviation σ. It is shown that the values of all metrics increase with increasing
noise level. The reason is that sharp edges are introduced by noise.

4.6 Blocking Susceptibility

A common distortion in video/image compression, is blocking. Blocking ar-
tifacts are artificial discontinuities in images generated by block-wise quan-
tization in several block-based coders (e.g. JPEG, MPEG-2, H.264). Those
impairments increase the measured sharpness by adding artificial edges to the
images. Due to our focus on only the sharpest edges in an image, blocking
artifacts can be very falsifying, especially for heavily blurred images.

Blocking impairments typically appear in a regular form (e.g. in a grid of
8x8 pixels). In our tests we created artificial 8x8 blocks in the LIVE Gaussian
blur test set by adding random intensity ∆i ∈ [−10, 10] to each pixel in the
block. Experiments showed that only at high blurring (σgblur > 5) our met-
ric gets susceptible to blocking impairments. The reason is blocking-edges
mainly affecting our result. If robustness to blockiness is vitally important,

27



a better result could be achieved by using a blocking detection method and
then simply omit the measured edge widths at local blocking borders. Alter-
natively a blocking metric, e.g [18], could be used to measure the magnitude
of extracted blocking impairments. Thus the metrics sharpness can be de-
creased in respect to the assessed blockiness.
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4.7 Performance Results

The proposed sharpness metric is compared with the existing metrics in sec-
tion 2, also the results of the Marzilianos’ and our basic metrics are listed.
We calculate the LCC, NLCC, SROCC, OR, RMSE and MAE for perfor-
mance comparison. Higher LCC, NLCC and SROCC indicate a higher cor-
relation between the metrics’ values and the subjective scores, while lower
OR, RMSE and MAE indicate a higher prediction accuracy. Two subjective
databases, listed in section 4.2, are used. The OR can not be calculated for
the TID2008 database, because no standard deviation of the subjective rat-
ings is available. The different RMSE and MAE scales are due to the altering
scale of the estimated MOS, e.g. the LIVE database provides MOS ranging
from 0 to 100, while TID2008-MOS are between 0 and 9. The proposed met-
ric demonstrates good and stable performance and is the best performer on
most of the datasets. Figure 12 shows the scatter plot of MOS versus metric
prediction, an almost linearly relation is given.
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Figure 12: Scatter plot of the proposed sharpness metric on the LIVE Gaus-
sian blur database (no non-linear mapping applied). Each data point repre-
sents a test image, with a mean subjective score (y-axis) and an objective
metric output (x-axis).
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As noted in section 3, Proposed Metric 2 distinguishes from Metric 1 by a
constant gradient magnitude threshold and a higher usage of image blocks
for the final sharpness computation.

4.7.1 LIVE Database

LIVE Gaussian Blur Dataset

Metric LCC NLLCC SROCC OR RMSE MAE

Proposed Metric 1 0.9600 0.9627 0.9626 0.0460 5.8831 4.6482
Proposed Metric 2 0.9389 0.9449 0.9452 0.0862 7.1221 5.6271
CPBD [9] 0.9127 0.9127 0.9431 0.1609 8.8889 6.8227
LPC-SI [8] N/A 0.9239 0.9368 0.1724 8.525 6.9335
JNB [8] 0.8222 0.8428 0.8423 0.2356 11.7061 9.2404
NSS jp2k metric [10] 0.1801 0.1975 0.3377 0.5000 21.3215 16.9850
Marziliano et al. [7] - 0.8597 0.8659 0.2184 11.1106 8.2743
Variance, 2.1.2 0.5916 0.0213 0.5893 0.5000 21.7502 17.4564
Autocorrelation, 2.1.1 0.3968 0.3771 0.4683 0.5057 20.1444 15.8333

SSIM, full-reference [1] N/A 0.9487 0.9519 N/A 5.8225 N/A

LIVE JPEG2000 Dataset

LCC NLCC SROCC OR RMSE MAE

Proposed Metric 2 0.8701 0.8974 0.9012 0.2203 10.7647 8.7701
CPBD [9] 0.8658 0.8823 0.8859 0.2511 11.4825 9.0782
LPC-SI [8] N/A 0.4233 0.388 0.6167 22.1024 18.4596
JNB [8] 0.7002 0.7081 0.7159 0.4449 17.2251 13.9603
NSS jp2k metric [10] 0.9137 0.9209 0.9153 0.1894 9.5080 8.3387
Marziliano et al. [7] N/A 0.7815 0.7744 0.2184 15.2196 0.4670
Variance, 2.1.2 0.1137 0.1137 0.1413 0.6123 24.3951 21.1076
Autocorrelation, 2.1.1 0.3649 0.3264 0.3643 0.6123 19.3194 19.3194

Table 2: Performance comparison on the LIVE database, the boldface entries
indicate the best performer. As shown, our metric performs superior on
uniformly blurred content, even comparable to recent full-reference image
quality metrics. An evaluation of full-reference image quality assessment
algorithms, is provided in [2]. As shown the structural similarity (SSIM)
index, comparing local patterns in images, produces a NLCC of 0.9487.
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4.7.2 TID2008 Database

TID2008 Gaussian Blur Dataset

Metric NLCC SROCC RMSE MAE

Proposed Metric 1 0.8537 0.8492 0.6112 0.4927
Proposed Metric 2 0.8278 0.8359 0.6584 0.5170
CPBD [9] 0.8235 0.8412 0.6657 0.5173
LPC-SI [8] 0.8113 0.803 0.6778 0.5202
JNB [8] 0.6931 0.6667 0.8459 0.6529
NSS jp2k metric [10] 0.3367 0.2761 1.1049 0.9237
Marziliano et al. [7] 0.709 0.7165 0.8176 0.6466
Variance, 2.1.2 0.4427 0.4502 1.0522 0.8439
Autocorrelation, 2.1.1 0.3275 0.4307 1.1088 0.9182

TID2008 JPEG2000 Dataset

Metric NLCC SROCC RMSE MAE

Proposed Metric 2 0.9301 0.9287 0.7169 0.5652
CPBD [9] 0.9223 0.925 0.7406 0.5831
LPC-SI [8] 0.7952 0.7295 1.1621 0.9356
JNB [8] 0.8798 0.8789 0.9111 0.7213
NSS jp2k metric [10] 0.3222 0.3999 1.8521 1.6030
Marziliano et al. [7] 0.8667 0.8694 0.9561 0.7127

Table 3: Performance comparison on TID database. The proposed metrics
exhibit a good performance. Note that the JPEG2000 quality metric of [10]
shows a low correlation for this database. The reason is assumed to be the
training of this QA algorithm on half of the LIVE data set.

The difference in performance on the databases can be attributed to the
variance in the distortion strengths, contents or subjective judgement. More
precisely, the better performance of the metrics on the LIVE database can
be explained by the wider range of distortion strengths, making subjective
and objective prediction easier. An example is shown in figure 8.
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5 Conclusion

An effective sharpness estimation algorithm, utilizing HVS characteristics,
is presented. We have shown that the proposed metric outperforms existing
no-reference sharpness metrics. The effectiveness of the proposed method is
validated by subjective tests on Gaussian-blurred and JPEG2000 compressed
images. The metric resolves some issues in existing metrics, major advan-
tages are a more accurate sharpness prediction and a lower susceptibility to
diverging image content. As evaluated in [2] our metric is even comparable
to full-reference image quality assessment algorithms for uniformly blurred
content.

For applications without reference to the HVS, e.g. an objective sharp-
ness comparison of different images/videos, the features in section 3.3 and
3.4 may be omitted. Hence more consistent results for diverging image/video
content can be achieved. The presented method also exhibits a low computa-
tional complexity, making real-time video sharpness assessment possible (i.e.
the C++ implementation needs ≈ 25ms for a standard-definition-frame).
Furthermore unlike than in recent sharpness metrics, it is possible to effec-
tively use the metric for highly blurred content. Possible applications are the
detection of out of focus blur, due to camera defocus, or motion blur, caused
by relative motion between the camera and the scene. In our experimental
results the metric shows a consistently decrease for Gaussian blur up to a σ
of 15 pixels, as well as a high accuracy, monotonicity and consistency.

We confute an argument of Hsin et al. [19], that the edge width may
not be accurately measured in moderately blurred content. The experimen-
tal results show the superiority of our method compared to recent metrics.
Future work includes a weighting method for the measured edge widths and
the submission of a four page excerpt of this thesis to the ICIP 2012.
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