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• Scalable: use unlimited data to train unlimited-sized models
• Tremendously successful in NLP

Vision

Self-Supervised Representation Learning

Language

[Devlin et al, NAACL 2019] [Brown et al, NeurIPS 2020]
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Masked Auto-Encoders Are Scalable Vision Learners:

Kaiming, Xinlei, Saining, Yanghao, Piotr, Ross
CVPR 2022 
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What is MAE?

• Very simple method, but highly effective

• BERT-like algorithm, but with crucial design changes for vision

• Intriguing properties – better scalability and more from analysis

[Devlin et al, NAACL 2019] [He et al, CVPR 2022]



How MAE Works?

Random masking
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How MAE Works?

Reconstruct



MAE Reconstruction Example

Masked input: 80% You guess?

?



MAE Reconstruction Example

Masked input: 80% MAE’s guess



MAE Reconstruction Example

Masked input: 80% MAE’s guess Ground truth
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BERT-unlike: Mask Ratio
• BERT: 15% is enough to create a challenging task
• MAE: a high ratio of 75% - 80% is about optimal

[Devlin et al, NAACL 2019]
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BERT-unlike: Encoder-Decoder

• MAE:
• Large encoder on visible tokens
• Small decoder on all tokens
• Projection layer to connect the two

• Very efficient when coupled
with high mask ratio (75%)

projection layer 

[Devlin et al, NAACL 2019]



MAE for Downstream Tasks: Encoder Only
• After MAE pre-training, just throw away the decoder

• Encoder is used for representations with full-sequence input



Experimental Protocols

• Pre-training dataset: ImageNet-1K

• Architecture: ViT-Large encoder, 512-dim decoder



Experimental Protocols

• Pre-training dataset: ImageNet-1K

• Architecture: ViT-Large encoder, 512-dim decoder

• Transfer task: ImageNet-1K classification 
• “ft”: end-to-end tuning with MAE as an initialization

• “lin”: linear probing, a single classifier on top of frozen encoder features



Analysis: Decoder Size
• Encoder has 24-blocks, 1024-dimensional 

Decoder depth Decoder width



Analysis: Mask Ratio



Analysis: Mask Token [M] in Encoder

• Encoder w/[M] is default in BERT
• Big domain gap for linear probing
• Pre-train sees 25% of the images only, while evaluation sees 100%



Analysis: Reconstruction Target

• Pixels with normalization: per-patch -- minus mean, divide by std

• PCA: only low-frequency component is retained

• dVAE token: from DALLE, expensive to compute

[Ramesh et al, ICML 2021] [Bao et al, ICLR 2022]
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• MAE can work with minimal data augmentation



Analysis: Augmentations

• MAE can work with minimal data augmentation
• For Siamese learning, augmentation is crucial

𝑥! encoder 𝑝!

similarity

𝒙𝟐 encoder

weight sharing

𝒑𝟐

1st view

2nd view



Scalability: Longer Training



Scalability: Longer Training

Wall-clock speed still efficient thanks to MAE design
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new SOTA on ImageNet-1K (no extra data): 87.8%



Scalability: Larger Models

new SOTA on 5 large-scale classification datasets

new SOTA on 4 lmageNet robust evaluations



Scalability: Larger Models

COCO detection: +4.0% ADE20K segmentation: +3.7%



Scalability: Sequence Length
[Hu et al, arXiv 2202.04639]

• Longer sequence length during pre-training, but fixed length 
during downstream transfers 

https://arxiv.org/abs/2202.04639


Scalability: Sequence Length
[Hu et al, arXiv 2202.04639]

COCO pre-training ImageNet-1K pre-training

• Longer sequence length during pre-training, but fixed length 
during downstream transfers 

https://arxiv.org/abs/2202.04639


Is the Journey 99% Done?
• NLP has witnessed amazing progress in scaling since BERT



Is the Journey 99% Done?
• NLP has witnessed amazing progress in scaling since BERT

• It’s just starting in vision:
• Temporal data – Christoph
• Architectures – ConvNets?
• Other modalities? 3D?
• Other downstream tasks?
• Other axes to scale?
• [Your exploration] here!



Take-aways

• Self-supervised learning aims at scalable representation learning

• Masked auto-encoders can serve as scalable vision learners

• Exciting years ahead in this direction!

code (GPU): https://github.com/facebookresearch/mae
code (TPU): https://github.com/facebookresearch/long_seq_mae




