

## Masked Auto-Encoders as Scalable Vision Learners



Xinlei Chen

ECCV 2022 tutorial on self-supervised representation learning in computer vision

**facebook** Artificial Intelligence Research











## Self-Supervised Learning

#### Self-Supervised Learning



### Self-Supervised Learning



#### Self-Supervised Representation Learning



### Self-Supervised Representation Learning

• Scalable: use unlimited data to train unlimited-sized models

[Devlin et al, NAACL 2019] [Brown et al, NeurIPS 2020]

### Self-Supervised Representation Learning

- Scalable: use unlimited data to train unlimited-sized models
- Tremendously successful in NLP



[Devlin et al, NAACL 2019] [Brown et al, NeurIPS 2020]

## Self-Supervised Representation Learning

- Scalable: use unlimited data to train unlimited-sized models
- Tremendously successful in NLP



[Chen et al, ICML 2020] [He et al, CVPR 2022]

#### Self-Supervised Paradigms Covered

Contrastive / Siamese



 $\rightarrow$  Tutorial from Ting Chen

SimCLR 1<sup>st</sup> author, Google

5:30 pm – 6:15pm

[Chen et al, ICML 2020] [He et al, CVPR 2022]

#### Self-Supervised Paradigms Covered

Contrastive / Siamese



→ Tutorial from Ting Chen SimCLR 1<sup>st</sup> author, Google 5:30 pm – 6:15pm • Reconstructive / Auto-Encoding  $\hat{x} - \int f x$ 

[Chen et al, ICML 2020] [He et al, CVPR 2022]

#### Self-Supervised Paradigms Covered

• Contrastive / Siamese



→ Tutorial from Ting Chen SimCLR 1<sup>st</sup> author, Google 5:30 pm – 6:15pm



Masked Auto-Encoders Are Scalable Vision Learners: Kaiming, Xinlei, Saining, Yanghao, Piotr, Ross CVPR 2022

[He et al, CVPR 2022]

#### What is MAE?

• Very simple method, but highly effective

[Devlin et al, NAACL 2019] [He et al, CVPR 2022]

#### What is MAE?

- Very simple method, but highly effective
- BERT-like algorithm, but with crucial design changes for vision

[Devlin et al, NAACL 2019] [He et al, CVPR 2022]

#### What is MAE?

- Very simple method, but highly effective
- BERT-like algorithm, but with crucial design changes for vision
- Intriguing properties better scalability and more from analysis

#### How MAE Works?



Random masking

#### How MAE Works?



Encode visible patches

#### How MAE Works?



Add mask tokens



Reconstruct

#### MAE Reconstruction Example



Masked input: 80%

You guess?

#### MAE Reconstruction Example



Masked input: 80%

MAE's guess

#### MAE Reconstruction Example



Masked input: 80%

MAE's guess

Ground truth

# ImageNet val set (unseen)













# ImageNet val set (unseen)



## COCO val set (unseen)



75% mask



85% mask





75% mask





85% mask









75% mask





75% mask



85% mask





75% mask





85% mask



[Dosovitskiy et al, ICLR 2021]

#### BERT-like: Transformers

 Vision Transformer (ViT) Class Bird MLP Less inductive bias Ball Head Car <u>Non-overlapping</u> tokenization ... Easier for masked auto-encoding Transformer Encoder Patch + Position 3 5 7 8 4 6 [2] 9 0\* 1 Embedding \* Extra learnable Linear Projection of Flattened Patches [class] embedding

#### [Dosovitskiy et al, ICLR 2021]

#### BERT-like: Transformers

 Vision Transformer (ViT) Class Bird MLP Less inductive bias Ball Head Car <u>Non-overlapping</u> tokenization ••• Easier for masked auto-encoding Transformer Encoder Scalable Patch + Position 5 6  $\overline{7}$ 8 3 4 [2] [9] 0\* 1 Embedding • with larger models \* Extra learnable Linear Projection of Flattened Patches [class] embedding on larger datasets

#### [Dosovitskiy et al, ICLR 2021]

#### BERT-like: Transformers



#### BERT-unlike: Mask Ratio

- BERT: 15% is enough to create a challenging task
- MAE: a high ratio of 75% 80% is about optimal



#### BERT-unlike: Encoder-Decoder

• BERT: encoder-*only* pre-training



#### BERT-unlike: Encoder-Decoder

#### • MAE:

- Large encoder on visible tokens
- Small decoder on all tokens
- Projection layer to connect the two



#### BERT-unlike: Encoder-Decoder

#### • MAE:

- Large encoder on visible tokens
- Small decoder on all tokens
- Projection layer to connect the two
- Very efficient when coupled with <u>high</u> mask ratio (75%)



## MAE for Downstream Tasks: Encoder Only

- After MAE pre-training, just *throw away* the decoder
- Encoder is used for representations with *full-sequence* input



#### Experimental Protocols

- Pre-training dataset: ImageNet-1K
- Architecture: ViT-*Large* encoder, 512-dim decoder

#### Experimental Protocols

- Pre-training dataset: ImageNet-1K
- Architecture: ViT-*Large* encoder, 512-dim decoder
- Transfer task: ImageNet-1K classification
  - "*ft*": end-to-end tuning with MAE as an initialization
  - "*lin*": linear probing, a single classifier on top of frozen encoder features

#### Analysis: Decoder Size

• Encoder has 24-blocks, 1024-dimensional

| blocks | ft   | lin  | dim  | ft   | lin  |
|--------|------|------|------|------|------|
| 1      | 84.8 | 65.5 | 128  | 84.9 | 69.1 |
| 2      | 84.9 | 70.0 | 256  | 84.8 | 71.3 |
| 4      | 84.9 | 71.9 | 512  | 84.9 | 73.5 |
| 8      | 84.9 | 73.5 | 768  | 84.4 | 73.1 |
| 12     | 84.4 | 73.3 | 1024 | 84.3 | 73.1 |

Decoder depth

Decoder width

Analysis: Mask Ratio



### Analysis: Mask Token [M] in Encoder

| case            | ft   | lin  | FLOPs |
|-----------------|------|------|-------|
| encoder w/ [M]  | 84.2 | 59.6 | 3.3×  |
| encoder w/o [M] | 84.9 | 73.5 | 1×    |

- Encoder w/[M] is default in BERT
- Big domain gap for linear probing
  - Pre-train sees 25% of the images only, while evaluation sees 100%

#### [Ramesh et al, ICML 2021] [Bao et al, ICLR 2022]

#### Analysis: Reconstruction Target

| case             | ft          | lin  |  |
|------------------|-------------|------|--|
| pixel (w/o norm) | 84.9        | 73.5 |  |
| pixel (w/ norm)  | <b>85.4</b> | 73.9 |  |
| PCA              | 84.6        | 72.3 |  |
| dVAE token       | 85.3        | 71.6 |  |

- Pixels with normalization: per-patch -- minus mean, divide by std
- PCA: only low-frequency component is retained
- dVAE token: from DALLE, expensive to compute

#### Analysis: Augmentations

| case             | ft   | lin  |
|------------------|------|------|
| none             | 84.0 | 65.7 |
| crop, fixed size | 84.7 | 73.1 |
| crop, rand size  | 84.9 | 73.5 |
| crop + color jit | 84.3 | 71.9 |

• MAE can work with minimal data augmentation

#### Analysis: Augmentations



- MAE can work with minimal data augmentation
- For Siamese learning, augmentation is crucial

#### Scalability: Longer Training



#### Scalability: Longer Training



Wall-clock speed still efficient thanks to MAE design











| dataset   | ViT-B | ViT-L | ViT-H | ViT-H <sub>448</sub> | prev best                       |
|-----------|-------|-------|-------|----------------------|---------------------------------|
| iNat 2017 | 70.5  | 75.7  | 79.3  | 83.4                 | 75.4 <b>[50</b> ]               |
| iNat 2018 | 75.4  | 80.1  | 83.0  | 86.8                 | 81.2 <b>[49]</b>                |
| iNat 2019 | 80.5  | 83.4  | 85.7  | 88.3                 | 84.1 <b>[49</b> ]               |
| Places205 | 63.9  | 65.8  | 65.9  | 66.8                 | 66.0 [ <b>19</b> ] <sup>†</sup> |
| Places365 | 57.9  | 59.4  | 59.8  | 60.3                 | 58.0 <b>[36]</b> ‡              |

#### new SOTA on 5 large-scale classification datasets

| dataset                         | ViT-B | ViT-L | ViT-H | ViT-H <sub>448</sub> | prev best |
|---------------------------------|-------|-------|-------|----------------------|-----------|
| IN-Corruption $\downarrow$ [27] | 51.7  | 41.8  | 33.8  | 36.8                 | 42.5 [32] |
| IN-Adversarial [28]             | 35.9  | 57.1  | 68.2  | <b>76.7</b>          | 35.8 [41] |
| IN-Rendition [26]               | 48.3  | 59.9  | 64.4  | 66.5                 | 48.7 [41] |
| IN-Sketch [60]                  | 34.5  | 45.3  | 49.6  | 50.9                 | 36.0 [41] |

new SOTA on 4 ImageNet robust evaluations

| method     | pre-train data | ViT-B | ViT-L |
|------------|----------------|-------|-------|
| supervised | IN1K w/ labels | 47.9  | 49.3  |
| MoCo v3    | IN1K           | 47.9  | 49.3  |
| BEiT       | IN1K+DALLE     | 49.8  | 53.3  |
| MAE        | IN1K           | 50.3  | 53.3  |

COCO detection: +4.0%

| method     | pre-train data | ViT-B | ViT-L |
|------------|----------------|-------|-------|
| supervised | IN1K w/ labels | 47.4  | 49.9  |
| MoCo v3    | IN1K           | 47.3  | 49.1  |
| BEiT       | IN1K+DALLE     | 47.1  | 53.3  |
| MAE        | IN1K           | 48.1  | 53.6  |

#### ADE20K segmentation: +3.7%

## Scalability: Sequence Length

• Longer sequence length during pre-training, but <u>fixed</u> length during downstream transfers

## Scalability: Sequence Length

• Longer sequence length during pre-training, but <u>fixed</u> length during downstream transfers



#### Is the Journey 99% Done?

• NLP has witnessed amazing progress in scaling since BERT

![](_page_62_Figure_2.jpeg)

#### Is the Journey 99% Done?

• NLP has witnessed amazing progress in scaling since BERT

- It's just <u>starting</u> in vision:
  - Temporal data Christoph
  - Architectures ConvNets?
  - Other modalities? 3D?
  - Other downstream tasks?
  - Other axes to scale?
  - [Your exploration] here!

![](_page_63_Figure_9.jpeg)

code (GPU): https://github.com/facebookresearch/mae code (TPU): https://github.com/facebookresearch/long\_seq\_mae

#### Take-aways

• Self-supervised learning aims at *scalable* representation learning

• Masked auto-encoders can serve as scalable vision learners

• Exciting years ahead in this direction!