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1. Masked Autoencoders (MAE) for video

2. MaskFeat studying features for masked autoencoding

3. Audio Learning with MAE

Outline: Masked Video Representation Learning



Masked Autoencoders As Spatiotemporal Learners
Christoph Feichtenhofer*, Haoqi Fan*, Yanghao Li, Kaiming He

Meta AI, FAIR

github.com/facebookresearch/mae_st
github.com/facebookresearch/SlowFast



Masked Language Modeling

“Two men playing a game of basketball on an outside court.”

“Two men playing a game of basketball on an outside 
court.”

Devlin et al., BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding



Masked Autoencoders (MAE) for visual learning

He et al., Masked Autoencoders Are Scalable Vision Learners



Masked Autoencoders as spatiotemporal learners

• Masking of random patches in spacetime 
• Encoder operates on the set of visible patches
• A small decoder on encoded patches and mask tokens reconstructs input 
• Except for patch and positional embeddings, no inductive bias



Masking can be agnostic in spacetime

• Task:
Kinetics-400
video classification

• Model: ViT-L
• Pre-train: 800 epochs
• Fine-tune: 100 epochs



Masking ratio can be extremely high

• For image classification, 75% is the optimal value, but for video 90% is 
considerably better



MAE is faster than pure supervised training



Influence of data scale and curation
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Masked Feature Prediction for Self-Supervised 
Visual Pre-Training

Chen Wei*,1,2, Haoqi Fan1, Saining Xie1, Chao-Yuan Wu1, Alan Yuille2, Christoph Feichtenhofer*,1
1Meta AI, FAIR, 2Johns Hopkins University

In CVPR 2022

github.com/facebookresearch/SlowFast



Language vs. Vision

● Language
○ sparse, discrete, semantic-rich
○ natural word tokens

● Vision
○ dense, continuous, high-dimensional
○ mimicking language: visual words/codebook?



Masked Feature Prediction

regress the masked patches

We study five different types of 
features.



Feature #1: pixel colors

● RGB raw pixels
○ A small gain
○ trivial local statistics and high-frequency details

+0.7



Feature #2: HOG

● Histogram of Oriented Gradients
○ popular in 2000s
○ invariance to geometry and photometric change (to some extent)
○ fast to compute with pytorch and GPU

from SIFT paper



Feature #2: HOG

from scikit-image



Feature #2: HOG

● Histogram of Oriented Gradients
○ invariance helps!

+1.8



Pixel vs. HOG: Color Ambiguity

pixel: large loss penalty because of unmatched 
color



Pixel vs. HOG: Texture Ambiguity

HOG: captures major edge 
directions 



Feature #3: token

● discrete VAE token
○ patch clustering
○ BEiT



Feature #4: deep features

● unsupervised deep features
○ contrastive unsupervised methods
○ work better than others

+2.2



Feature #4: deep features

● supervised deep features
○ more labels, lower top-1
○ ResNet50 helps, ViT-B does not



Feature #5: pseudo label

● pseudo class label for each patch
○ labeled by a 86.5% supervised model
○ but results in a huge drop

-3.0

model 
labeler

class label



Masked Feature Prediction



ImageNet-1K Fine-Tuning

ImageNet val accuracy

+4.2



Masked Autoencoders that Listen
Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski

Michael Auli, Wojciech Galuba, Florian Metze, Christoph Feichtenhofer

Meta AI, FAIR

In NeurIPS 2022

github.com/facebookresearch/AudioMAE



Audio-MAE





Comparison to state-of-the-art



Audio-MAE music sample, structured masking

masked 80%

original

reconstruction 
output



Audio-MAE speech sample, structured masking

masked 80%

original

reconstruction 
output



Audio-MAE speech sample

masked 80%

original

reconstruction 
output



Audio-MAE misc sound sample

masked 70%

original

reconstruction 
output



Audio-MAE music sample

masked 80%

original
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output



Audio-MAE music sample

masked 80%
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Audio-MAE event sound sample

masked 80%

original

reconstruction 
output



MAE Works Particularly on Video Because…

● Videos datasets are (relatively) small in terms of #videos
○ Low diversity - easy to overfit if training from scratch
○ Image pre-training for video has a domain gap
○ Directly pre-training on video is advantageous

● Videos are visually richer than images
○ Natural and abundant views of one object through time
○ One class label can not fully capture it – low “label density”
○ MAE directly learns to reconstruct both appearance and motion

● Masked autoencoding is general and the optimal masking strategy 
depends on the nature of the data (text, audio, image, video, … etc.)



• Video allows learning from spatiotemporal associations (across modalities)
• Offers to learn temporal prediction of appearance/shape, motion, as well as causality

1. Video MAE

2. MaskFeat

3. Audio MAE

Summary: Unsupervised learning from video


