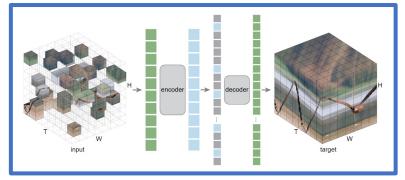
Self-supervised learning from masked video and audio

Christoph Feichtenhofer

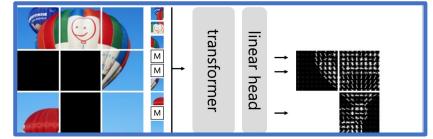
Meta Al, FAIR

Outline: Masked Video Representation Learning

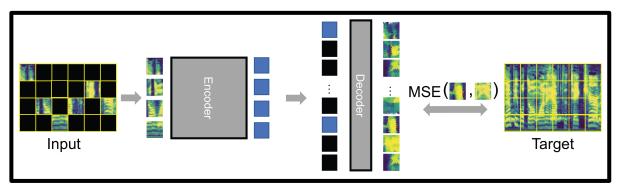
1. Masked Autoencoders (MAE) for video



2. MaskFeat studying features for masked autoencoding



3. Audio Learning with MAE



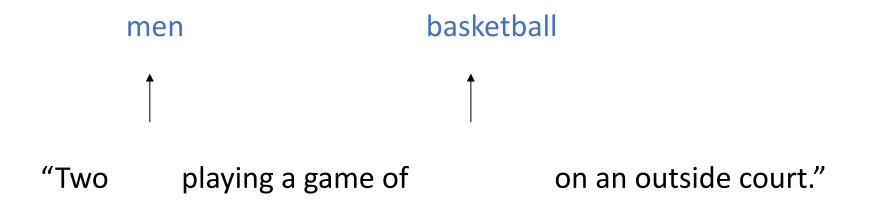
Masked Autoencoders As Spatiotemporal Learners

Christoph Feichtenhofer^{*}, Haoqi Fan^{*}, Yanghao Li, Kaiming He

Meta AI, FAIR

github.com/facebookresearch/mae_st
github.com/facebookresearch/SlowFast

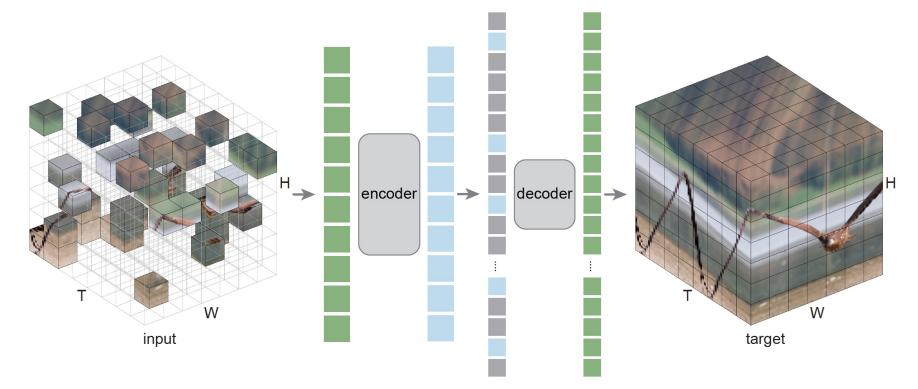
Masked Language Modeling



Devlin et al., BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding

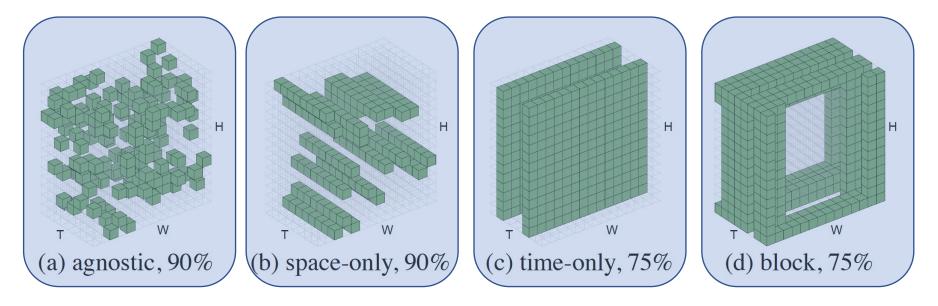
Masked Autoencoders (MAE) for visual learning

Masked Autoencoders as spatiotemporal learners



- Masking of random patches in spacetime
- Encoder operates on the set of visible patches
- A small decoder on encoded patches and mask tokens reconstructs input
- Except for patch and positional embeddings, no inductive bias

Masking can be agnostic in spacetime



Task: Kinetics-400 video classification

case	ratio	acc.
agnostic	90	84.4
space-only	90	83.5
time-only	75	79.1
block	75	83.2

(a) **Mask sampling**. See also Fig. 4. Random sampling that is spacetime*agnostic* works the best.

- Model: ViT-L
- Pre-train: 800 epochs
- Fine-tune: 100 epochs

Masking ratio can be extremely high



 For image classification, 75% is the optimal value, but for video 90% is considerably better

MAE is faster than pure supervised training

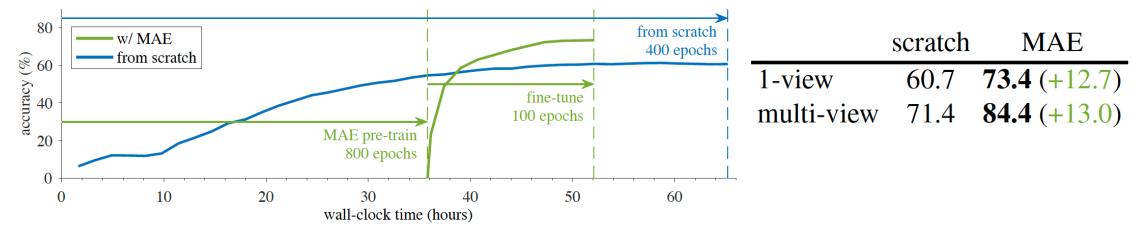
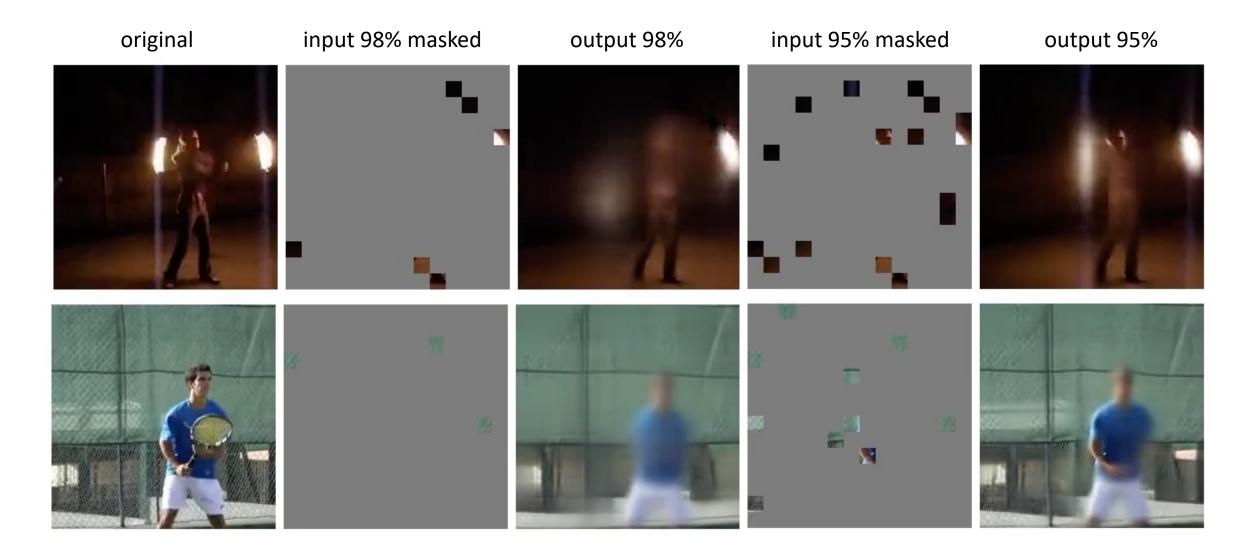


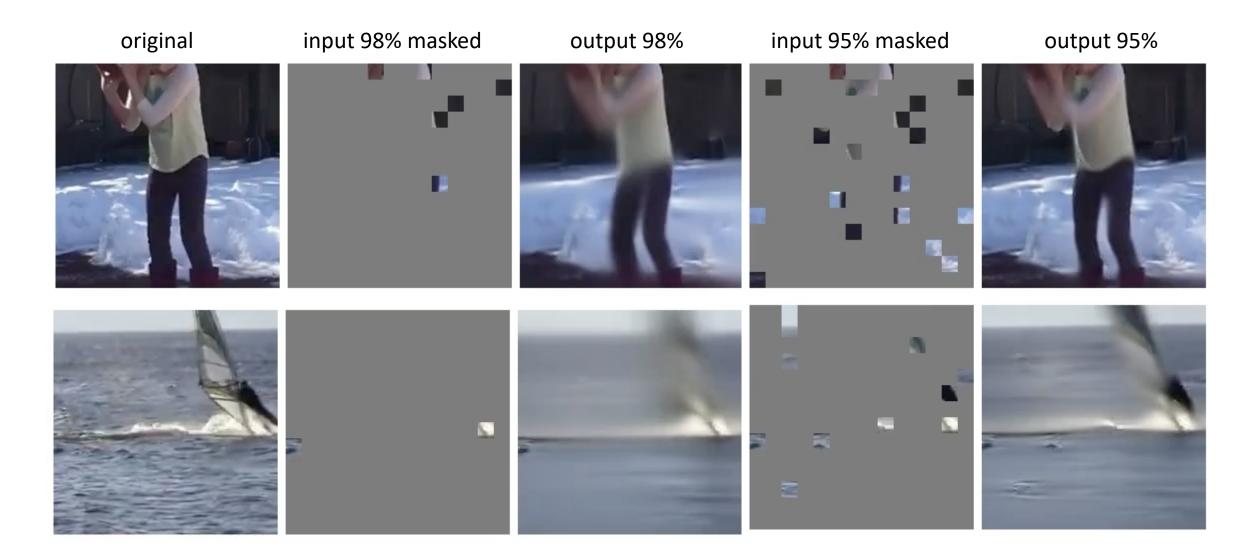
Figure 5: MAE pre-training plus fine-tuning is *much more accurate* and *faster* than training from scratch. Here the x-axis is the wall-clock training time (128 A100 GPUs), and the y-axis is the 1-view accuracy on Kinetics-400 validation. The table shows the final accuracy. The model is ViT-L.

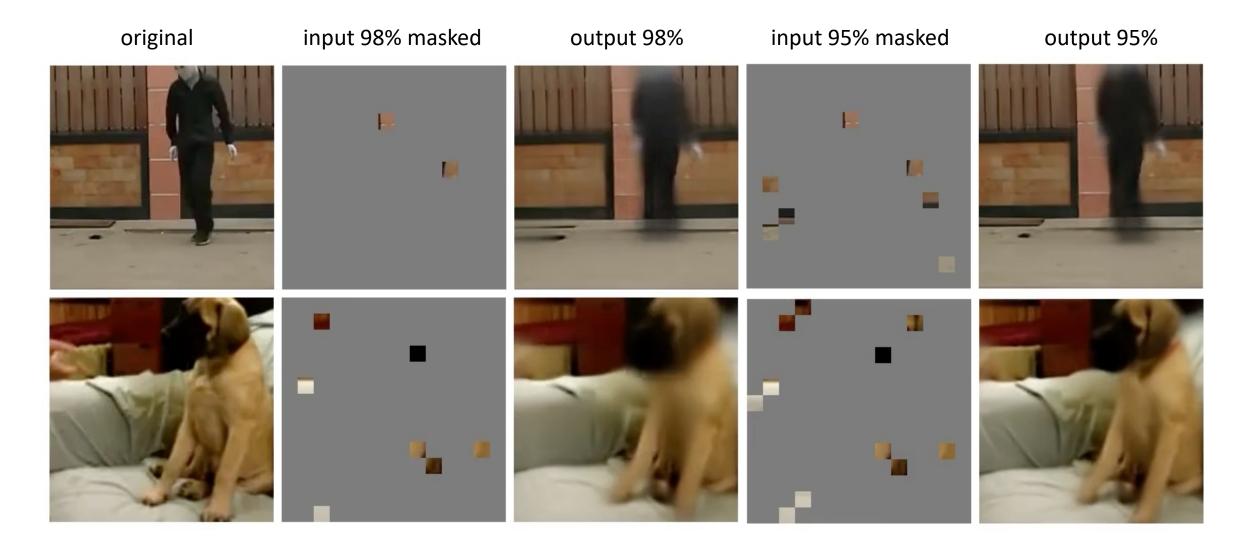
Influence of data scale and curation

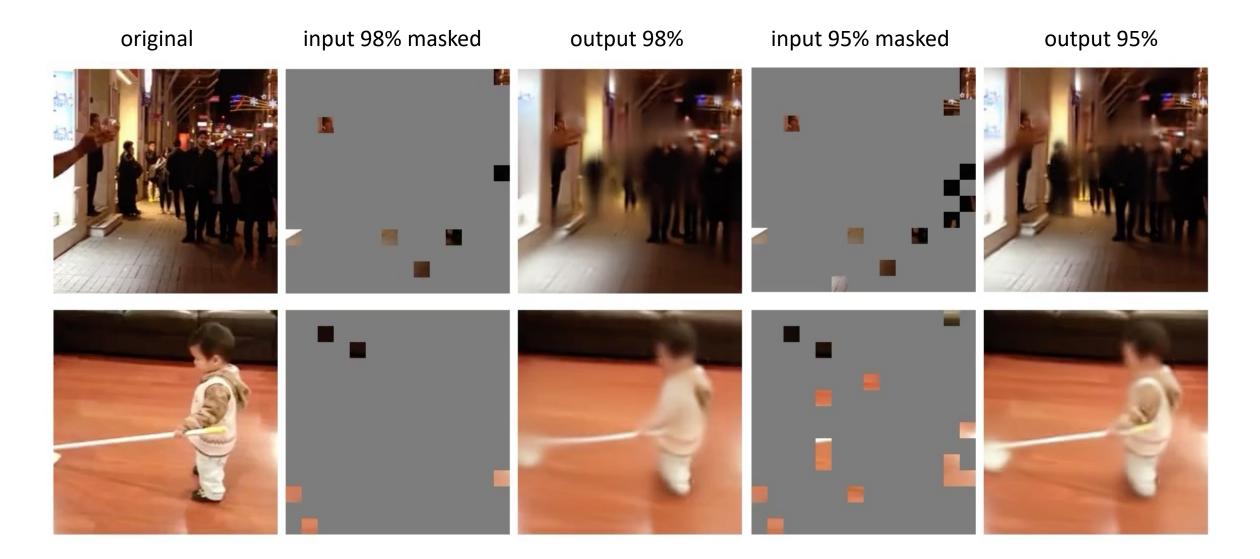
pre-train set	# pre-train data	pre-train method	K400	AVA	SSv2
-	-	none (from scratch)	71.4	-	-
K400	240k	supervised	-	21.6	55.7

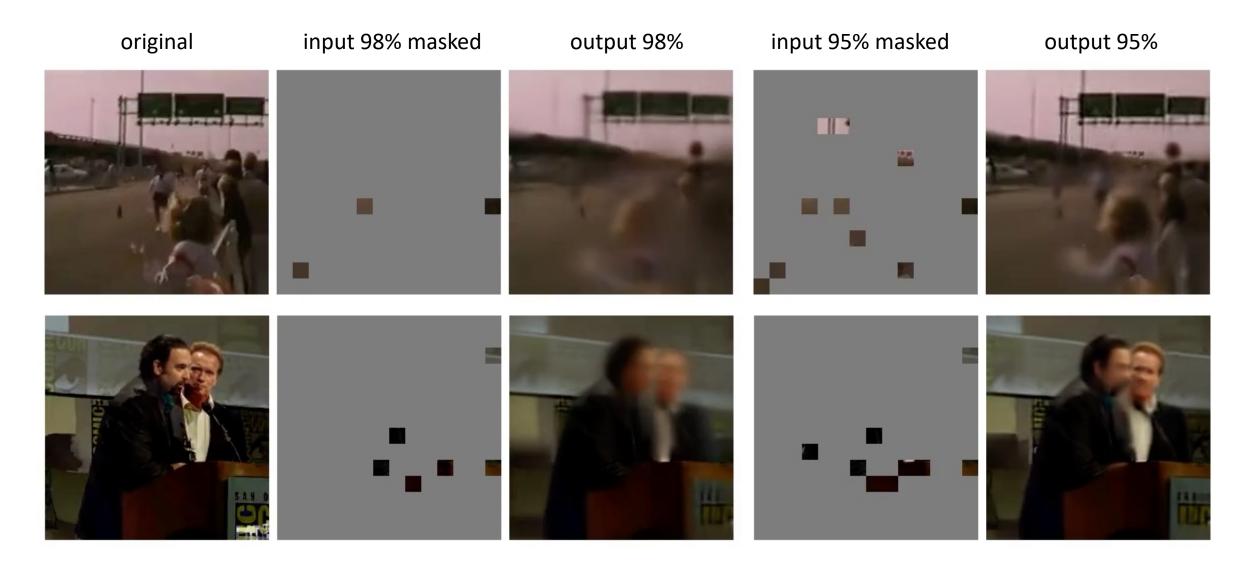
Table 3: Influence of pre-training data, evaluated on K400, AVA, and SSv2 as the downstream tasks.

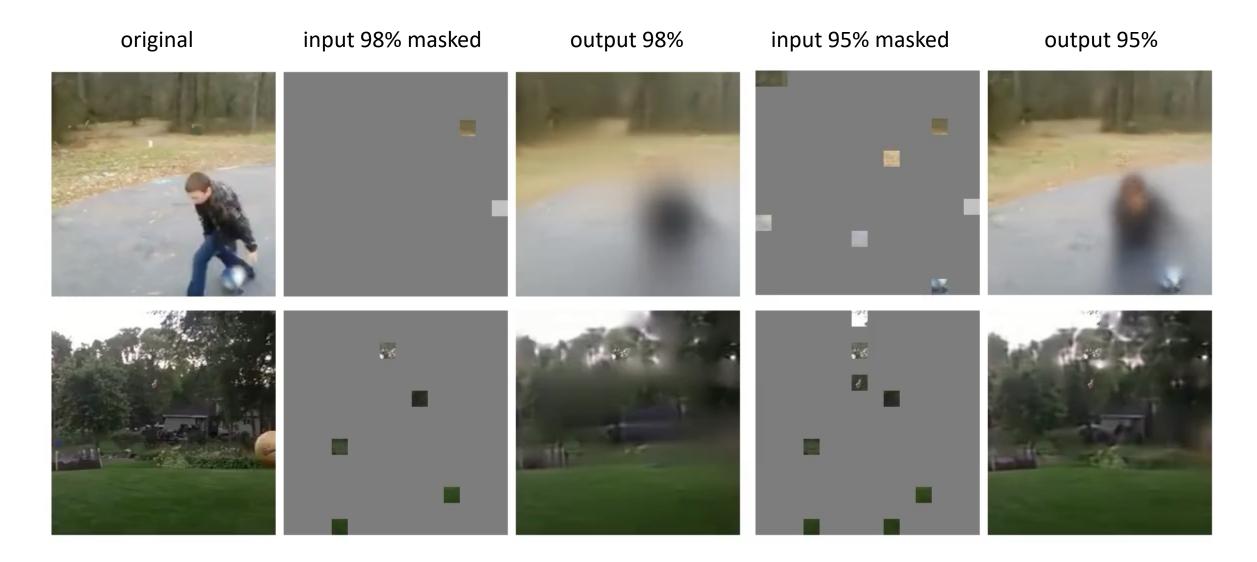


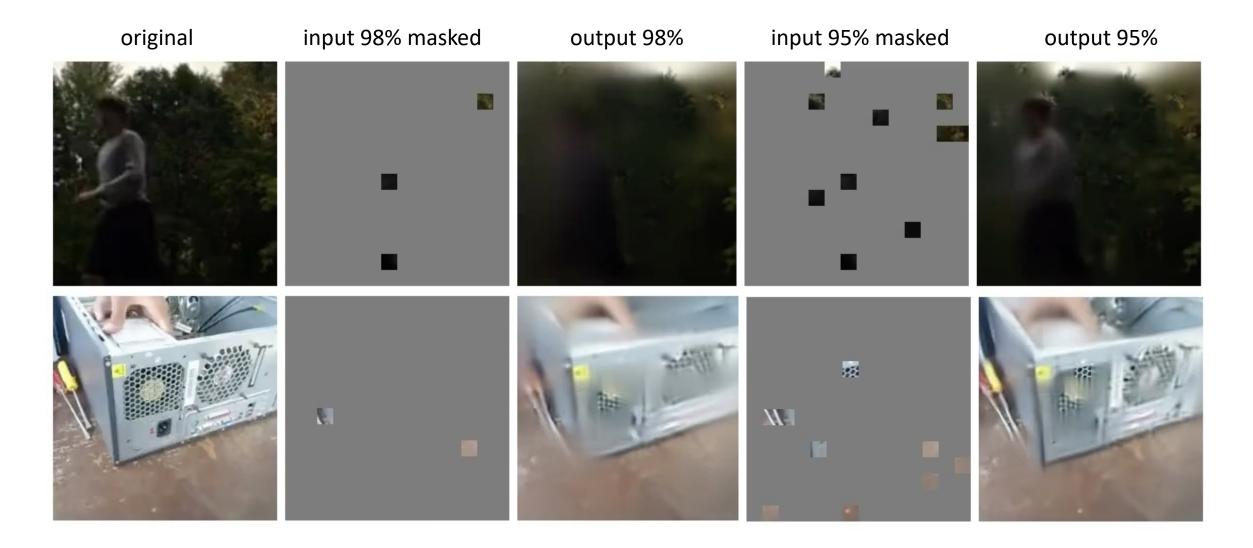












Masked Feature Prediction for Self-Supervised Visual Pre-Training

Chen Wei^{*,1,2}, Haoqi Fan¹, Saining Xie¹, Chao-Yuan Wu¹, Alan Yuille², Christoph Feichtenhofer^{*,1} ¹Meta AI, FAIR, ²Johns Hopkins University

In CVPR 2022

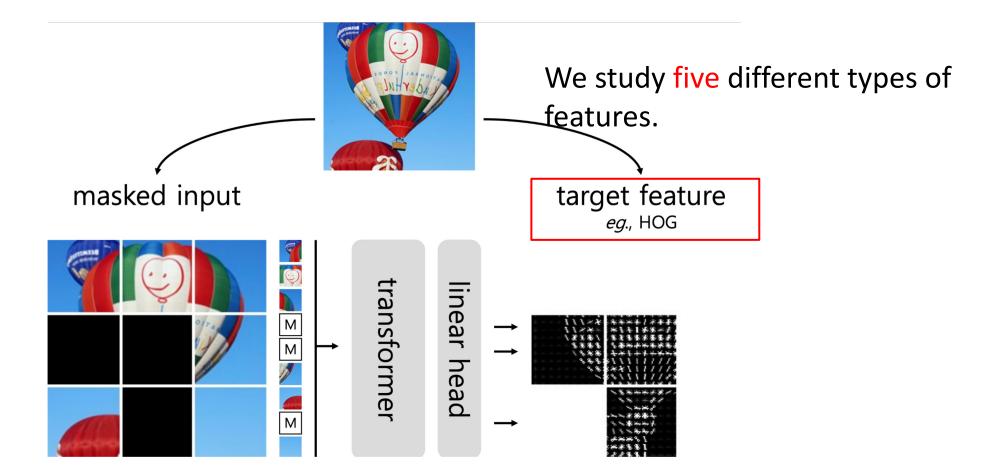
github.com/facebookresearch/SlowFast

Language *vs.* Vision

- Language
 - sparse, discrete, semantic-rich
 - natural word tokens

- Vision
 - dense, continuous, high-dimensional
 - mimicking language: visual words/codebook?

Masked Feature Prediction



regress the masked patches

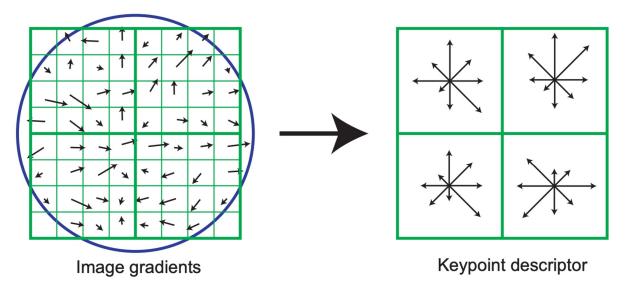
Feature #1: pixel colors

- RGB raw pixels
 - A small gain
 - trivial local statistics and high-frequency details

feature type	one-stage	variant	arch.	param.	$epoch^{\dagger}$	top-1	
scratch	-	DeiT [84]	-	-	-	81.8	
pixel colors	✓	RGB	-	-	-	82.5	+0.7

Feature #2: HOG

- Histogram of Oriented Gradients
 - popular in 2000s
 - invariance to geometry and photometric change (to some extent)
 - fast to compute with pytorch and GPU



from SIFT paper

Feature #2: HOG

Input image

Histogram of Oriented Gradients

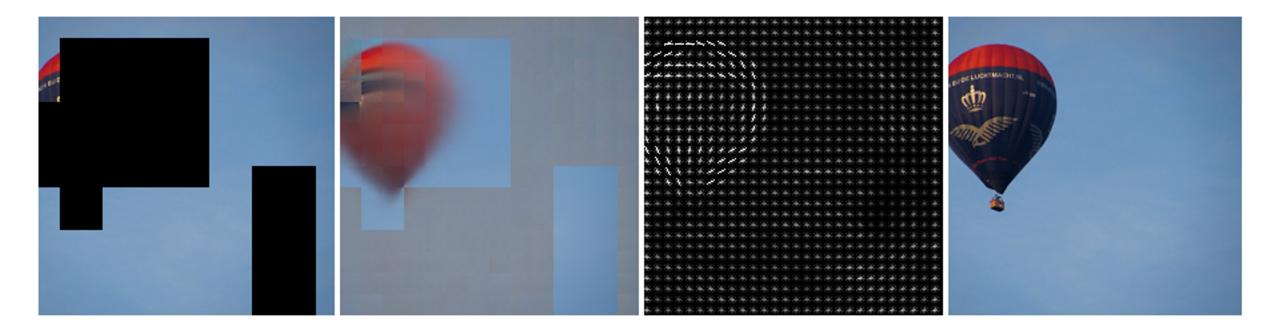
from scikit-image

Feature #2: HOG

- Histogram of Oriented Gradients
 - invariance helps!

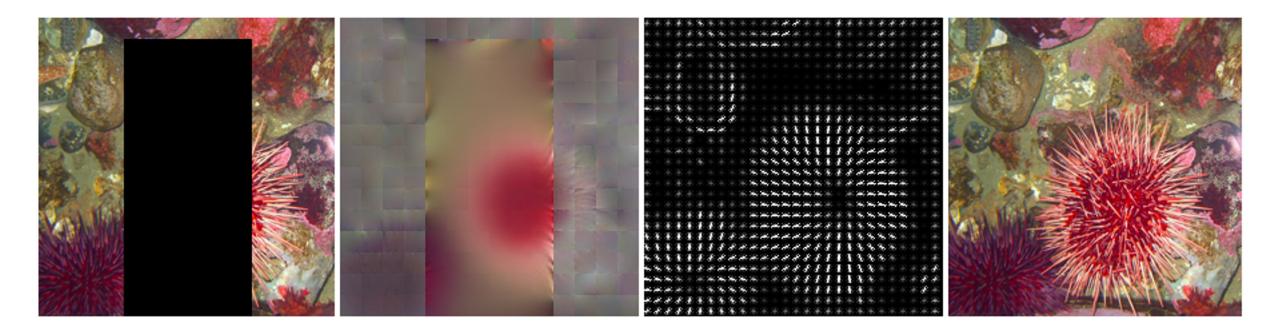
feature type	one-stage	variant	arch.	param.	$epoch^\dagger$	top-1	_
scratch	-	DeiT [84]	-	-	-	81.8	ר
pixel colors	✓	RGB	-	-	-	82.5	+1.8
image descriptor	\checkmark	HOG [22]	_	-	-	83.6	لم

Pixel vs. HOG: Color Ambiguity



pixel: large loss penalty because of unmatched color

Pixel vs. HOG: Texture Ambiguity

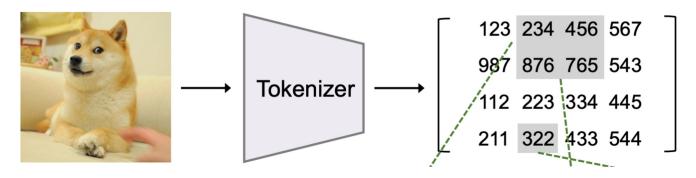


HOG: captures major edge directions

Visual Tokens

Feature #3: token

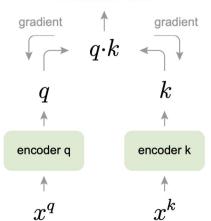
- discrete VAE token
 - patch clustering
 - BEiT



feature type	one-stage	variant	arch.	param.	$epoch^{\dagger}$	top-1
scratch	-	DeiT [84]	-	-	-	81.8
pixel colors	✓	RGB	-	-	-	82.5
image descriptor	\checkmark	HOG [22]	-	-	-	83.6
dVAE token	X	DALL-E [73]	dVAE	54	1199	82.8

Feature #4: deep features

- unsupervised deep features
 - contrastive unsupervised methods
 - work better than others



feature type	one-stage	variant	arcl	h. param.	$epoch^\dagger$	top-1	
scratch	-	DeiT [84]	-	-	-	81.8	Г
pixel colors	\checkmark	RGB	-	-	-	82.5	
image descriptor	\checkmark	HOG [22]	-	-	-	83.6	
dVAE token	X	DALL-E [73]	dVA	AE 54	1199	82.8	+2.2
unsupervised feature	×	MoCo v2 [16]	ResNo	et50 23	800	83.6	+2.2
unsupervised feature	×	MoCo v3 [18]	ViT	-B 85	600	83.9	
unsupervised feature	×	DINO [9]	ViT-	-B 85	1535	84.0	لم ا
· · -						I	

contrastive loss

Feature #4: deep features

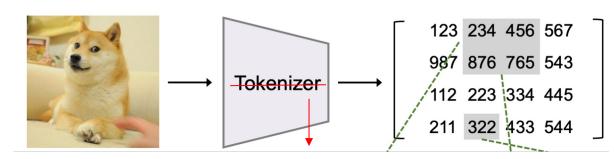
• supervised deep features

- more labels, lower top-1
- ResNet50 helps, ViT-B does not

feature type	one-stage	variant	arch.	param.	$epoch^\dagger$	top-1
scratch	-	DeiT [84]	-	-	-	81.8
pixel colors	\checkmark	RGB	-	-	-	82.5
image descriptor	\checkmark	HOG [22]	-	-	-	83.6
dVAE token	X	DALL-E [73]	dVAE	54	1199	82.8
unsupervised feature	×	MoCo v2 [16]	ResNet50	23	800	83.6
unsupervised feature	×	MoCo v3 [18]	ViT-B	85	600	83.9
unsupervised feature	×	DINO [9]	ViT-B	85	1535	84.0
supervised feature	×	pytorch [67]	ResNet50	23	90	82.6
supervised feature	×	DeiT [84]	ViT-B	85	300	81.9

Feature #5: pseudo label

- pseudo class label for each patch
 - labeled by a 86.5% supervised model 0
 - but results in a huge drop 0

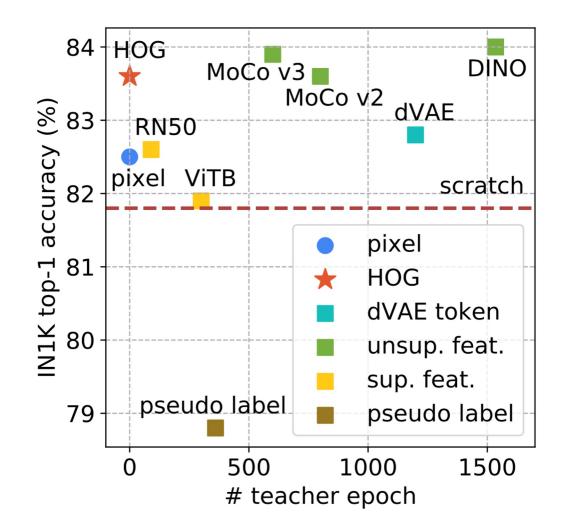


class label Visual Tokens

model Inholor

		labeler						
feature type	one-stage	variant	arch.	param.	$epoch^{\dagger}$	top-1		
scratch	-	DeiT [84]	-	-	-	81.8	ר	
pixel colors	\checkmark	RGB	-	-	-	82.5		
image descriptor	\checkmark	HOG [22]	-	-	-	83.6		
dVAE token	×	DALL-E [73]	dVAE	54	1199	82.8		
unsupervised feature	×	MoCo v2 [16]	ResNet50	23	800	83.6		
unsupervised feature	×	MoCo v3 [18]	ViT-B	85	600	83.9		-3.0
unsupervised feature	×	DINO [9]	ViT-B	85	1535	84.0		
supervised feature	×	pytorch [67]	ResNet50	23	90	82.6		
supervised feature	×	DeiT [84]	ViT-B	85	300	81.9		
pseudo-label	×	Token Labeling [50]	NFNet-F6	438	360	78.8	J	

Masked Feature Prediction



ImageNet-1K Fine-Tuning

						norm.	none	e ℓ_1	ℓ_2	channe	gray	rgb	opp.
						top-1	82.2	82.8	83.6	top-1	83.2	83.6	83.5
						(a) Co	ontrast r	normali	zation.	(b) Color	channe	l.
						#bins	6	9	12	cell size	4×4	8×8	16×16
pre-train	extra data	extra model	ViT-B	ViT-L		top-1	83.4	83.6	83.5	top-1	83.2	83.6	83.2
scratch [84]	-	-	81.8	81.5		(c) (Orientat	tion bin	S.	(d)	Spatial	cell size	e.
supervised ₃₈₄ [27]	IN-21K	-	84.0	85.2									
MoCo v3 [18]	-	momentum ViT	83.2	84.1									
DINO [9]	-	momentum ViT	82.8	-	+4.2								
BEiT [2]	DALL-E	dVAE	83.2	85.2									
MaskFeat (w/ HOG)	-	-	84.0	85.7									

ImageNet val accuracy

Masked Autoencoders that Listen

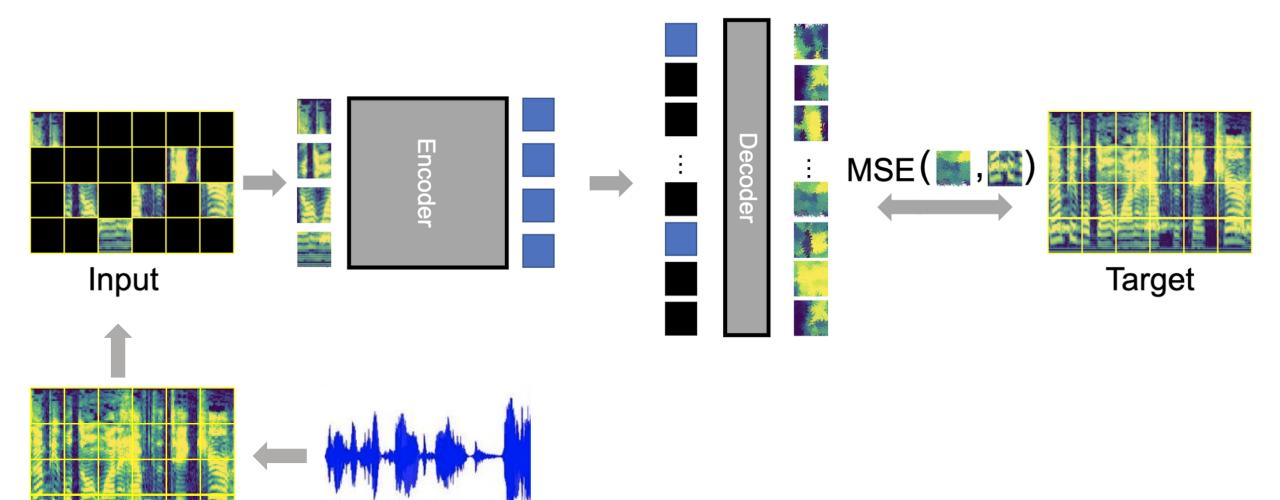
Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski Michael Auli, Wojciech Galuba, Florian Metze, Christoph Feichtenhofer

Meta AI, FAIR

In NeurIPS 2022

github.com/facebookresearch/AudioMAE

Audio-MAE



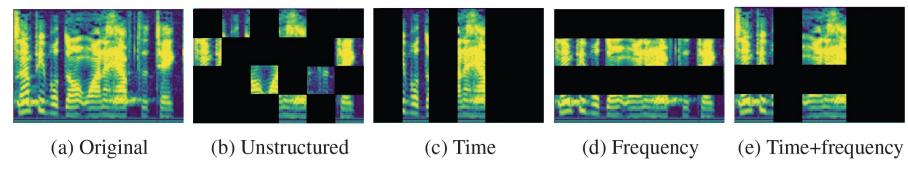


Figure 2: Masking strategies for Audio-MAE.

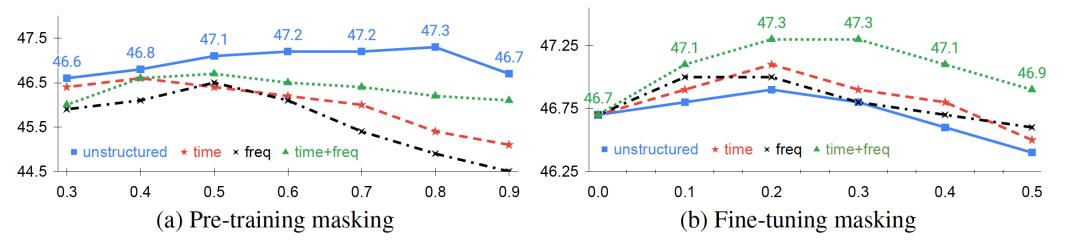
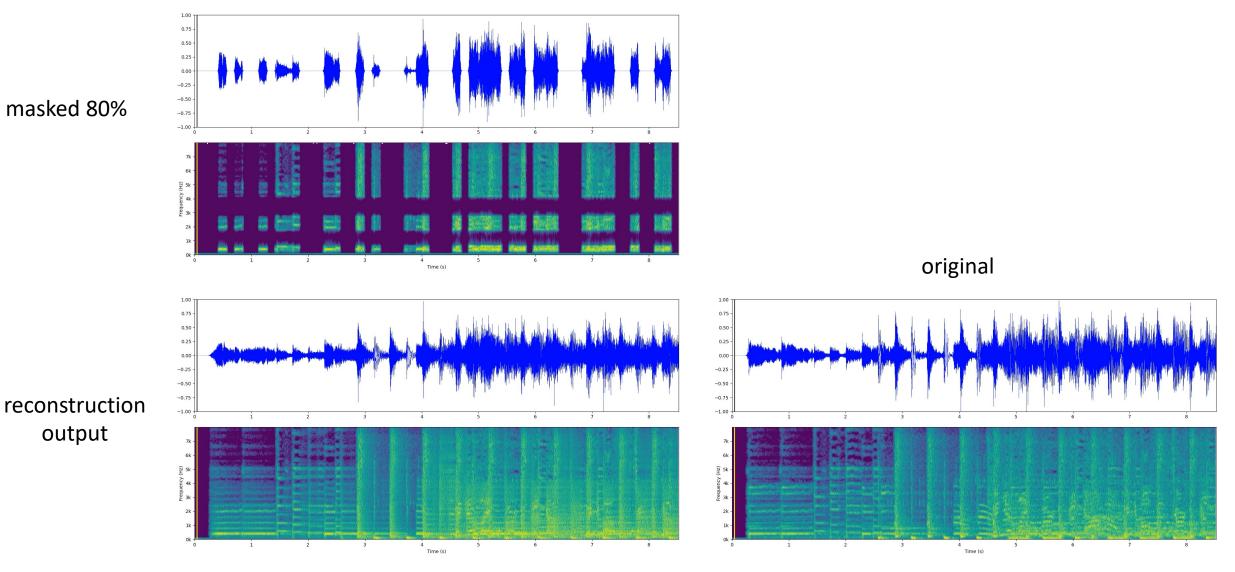


Figure 4: **Masking strategy**. A *higher* ratio and *unstructured* masking (random) is preferred in audio pre-training. For fine-tuning, a *lower* ratio and *structured* masking (time+frequency) is better. The y-axes are mAP on AS-2M and the x-axes are masking ratio.

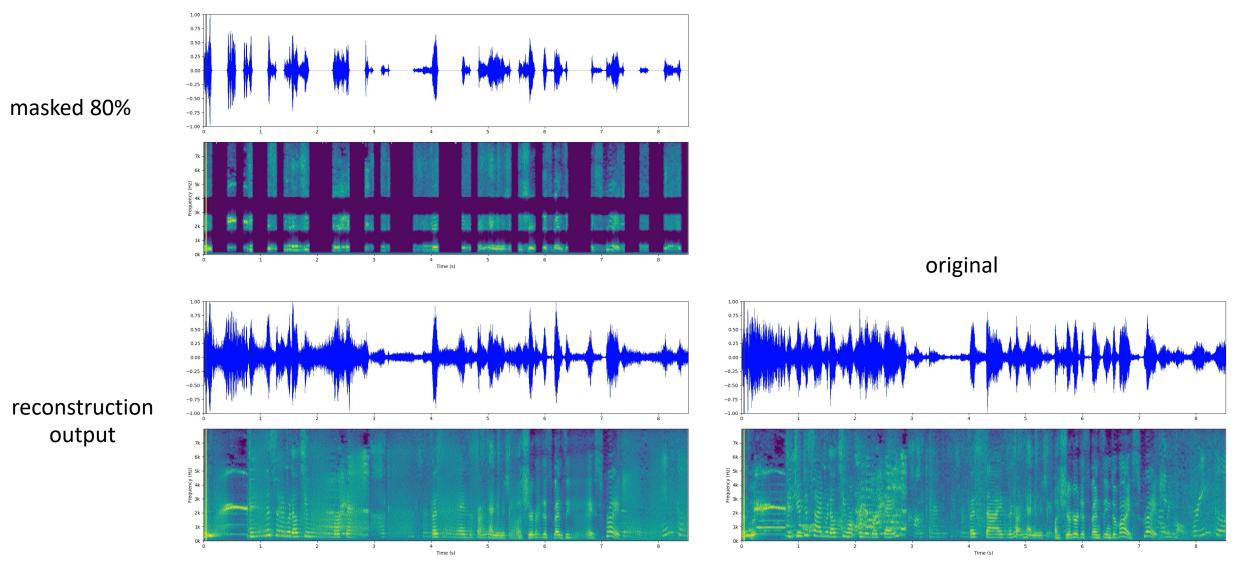
Comparison to state-of-the-art

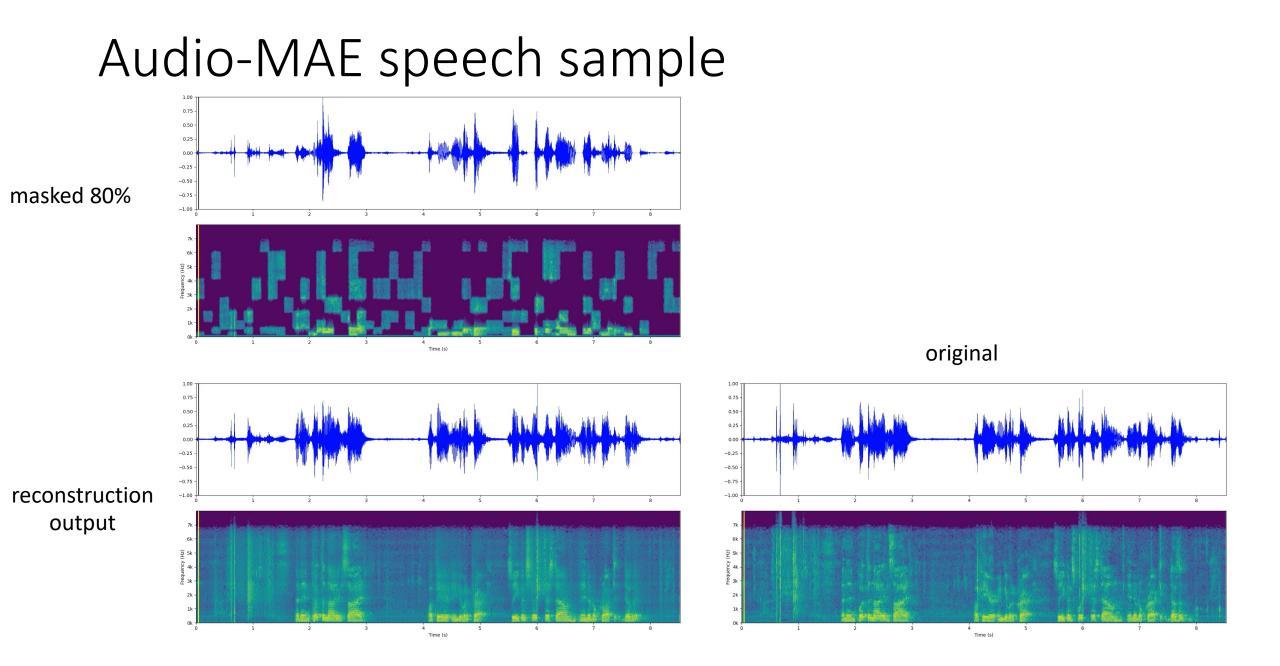
Model	Backbone	PT-Data	AS-20K	AS-2M	ESC-50	SPC-2	SPC-1	SID			
No pre-training											
ERÂNN [57]	CNN	-	-	45.0	89.2	-	-	-			
PANN [58]	CNN	-	27.8	43.1	83.3	61.8	-	-			
In-domain self-super	In-domain self-supervised pre-training										
wav2vec 2.0 [33]	Transformer	LS	-	-	-	-	96.2^{*}	75.2^{*}			
HuBERT [35]	Transformer	LS	-	-	-	-	96.3 [*]	81.4^{*}			
Conformer [37]	Conformer	AS	-	41.1	88.0	-	-	-			
SS-AST [18]	ViT-B	AS+LS	31.0	-	88.8	98.0	96.0	64.3			
Concurrent MAE-base	ed works										
MaskSpec [43]	ViT-B	AS	32.3	47.1	89.6	97.7	-	-			
MAE-AST [38]	ViT-B	AS+LS	30.6	-	90.0	97.9	95.8	63.3			
Audio-MAE (global)	ViT-B	AS	$36.6 \pm .11$	$46.8 \pm .06$	$93.6 \pm .11$	$98.3{\scriptstyle \pm .06}$	$97.6 {\pm .06}$	$94.1 {\pm}.06$			
Audio-MAE (local)	ViT-B	AS	$37.1 \pm .06$	$47.3 {\pm .06}$	$94.1{\scriptstyle\pm.10}$	$98.3{\scriptstyle \pm .06}$	$96.9{\scriptstyle \pm .00}$	94.8 ±.11			
Out-of-domain super	vised pre-tra	ining									
PSLA [30]	EffNet [59]	IN	31.9	44.4	-	96.3	-	-			
AST [10]	DeiT-B	IN	34.7	45.9	88.7	98.1	95.5	41.1			
MBT [11]	ViT-B	IN-21K	31.3	44.3	-	-	-	-			
HTS-AT [29]	Swin-B	IN	-	47.1	97.0^{\dagger}	98.0	-	-			
PaSST [28]	DeiT-B	IN	-	47.1	96.8 [†]	-	-	-			

Audio-MAE music sample, *structured masking*

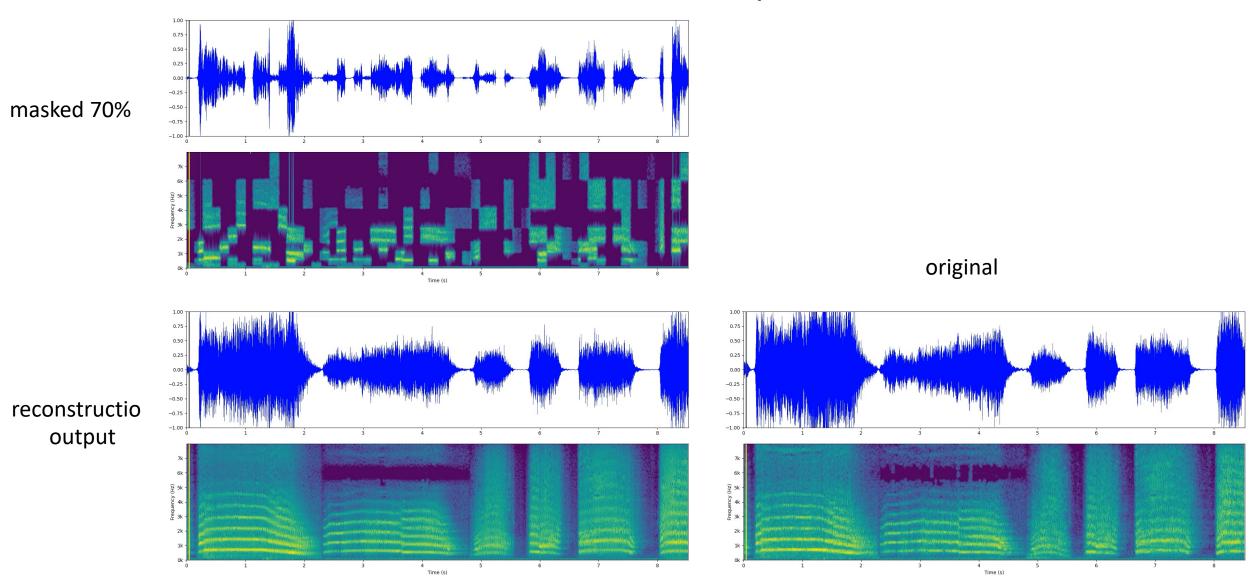


Audio-MAE speech sample, *structured masking*

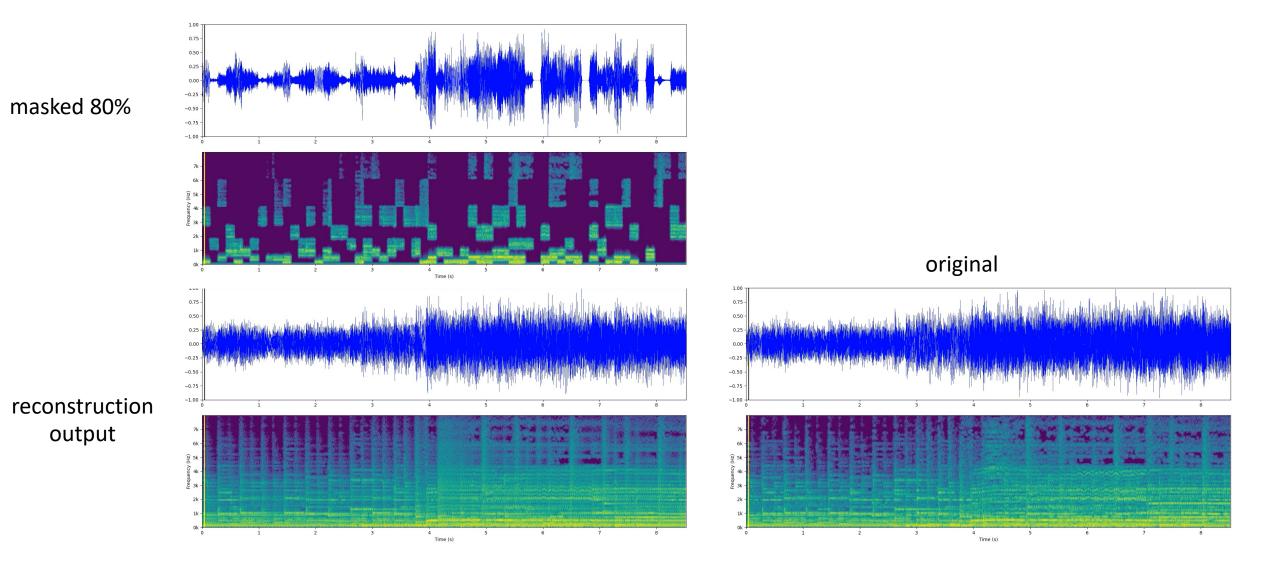




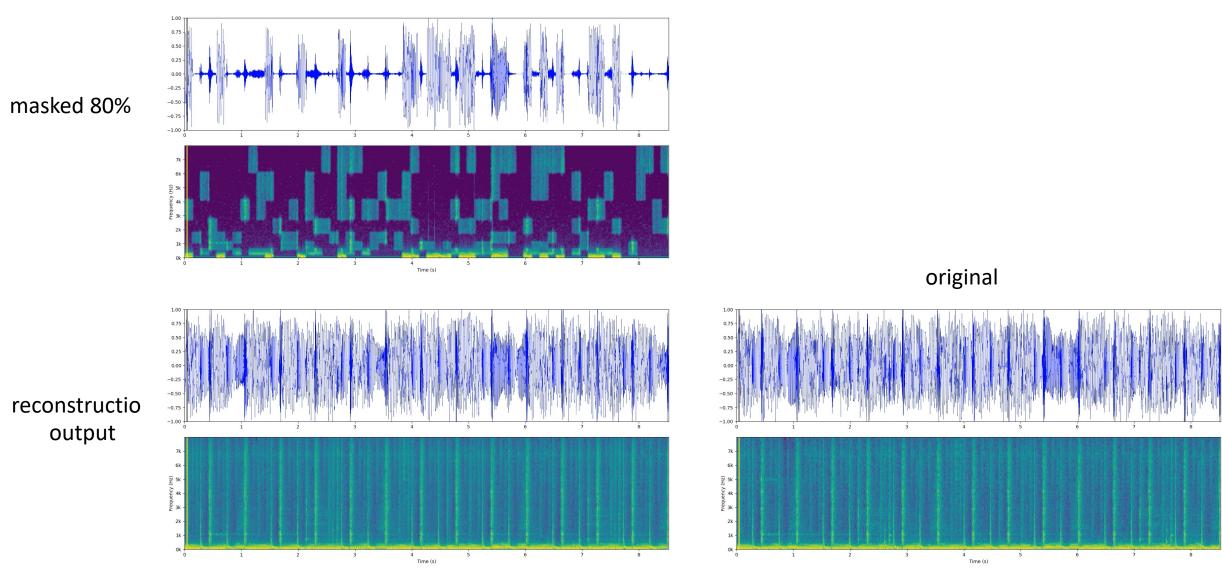
Audio-MAE misc sound sample



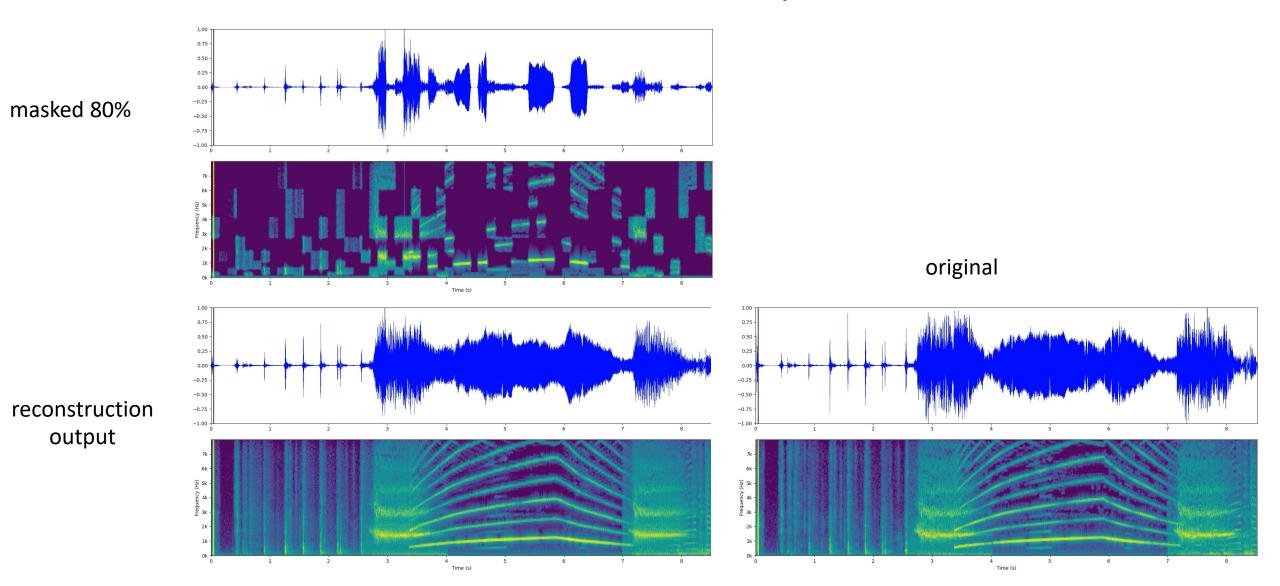
Audio-MAE music sample



Audio-MAE music sample



Audio-MAE event sound sample

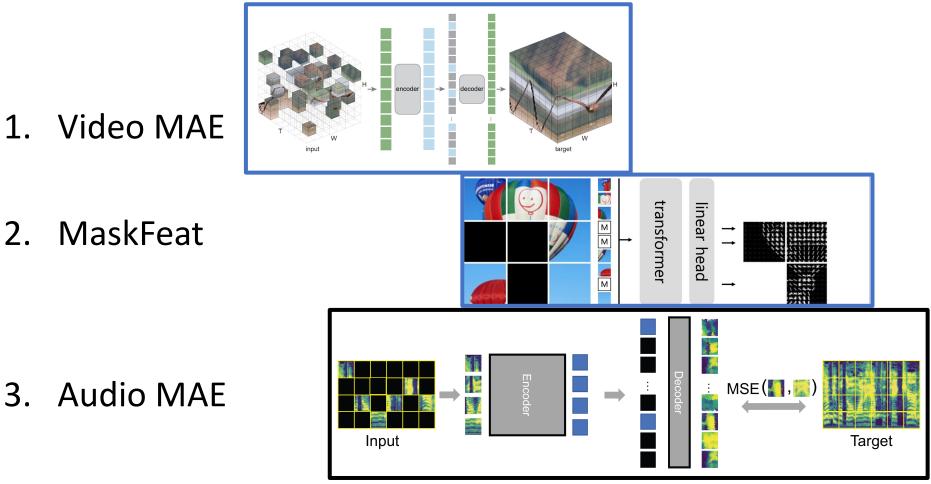


MAE Works Particularly on Video Because...

- Videos datasets are (relatively) small in terms of #videos
 - Low diversity easy to overfit if training from scratch
 - Image pre-training for video has a domain gap
 - Directly pre-training on video is advantageous
- Videos are visually richer than images
 - Natural and abundant views of one object through time
 - One class label can not fully capture it low "label density"
 - MAE directly learns to reconstruct both appearance and motion
- Masked autoencoding is general and the optimal masking strategy depends on the nature of the data (text, audio, image, video, ... etc.)

Summary: Unsupervised learning from video

- Video allows learning from spatiotemporal associations (across modalities)
- Offers to learn temporal prediction of appearance/shape, motion, as well as causality



2.