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What's covered in this talk?

Motivation for contrastive learning

Contrastive learning with negative examples
Contrastive learning without negative examples
Important design choices in contrastive learning
Open challenges for contrastive learning
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Motivation for contrastive learning
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The paradigm of learning “foundation” models

Labeled data Su,oerv,
(e.g. images & /ea,n/. 'Seq
labels) ~"9

Pretrained
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network
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“Self-supervised learning” is “supervised learning” without specific task annotations.




Google Research

Learning by prediction in an abstract space

One form of intelligence is the ability to prediCt  » erudictany part of the input trom any _mi

other part.
» Predict the future from the past.

» Predict the future from the recent past. ! '

PrediCt abstracted States instead Of raW inpUtS » Predict the past from the present. ﬁ
—_ » Predict the top from the bottom. ﬂ ﬁ
. . » Predict the occluded from the visible —
Avoid collapse by a contrastive loss > o now and proater U T presem MO
o Pull together positive states
o Push away negative states

o —

e But what to predict?

—
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Figure 1: Overview of Contrastive Predictive Coding, the proposed representation learning approach.
Although this figure shows audio as input, we use the same setup for images, text and reinforcement
learning.

[Oord et al, Representation Learning with Contrastive Predictive Coding, 2018]
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A multi-view agreement prediction task

e Predict instance identity (each instance as a class)

CNN backbone
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Figure 1: Exemplary patches sampled from Figure 2: Several random transformatlons fo(z)
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[Dosovitskiy et al, NeurlPS’14]

e Predict other views of the same example

b maximize

left stri tevn ! devs 2 ive
right strip Kt uden T
[Becker & Hinton, Nature’92] [Bachman et al, NuerlPS’19] [Tian et al, ECCV’20]
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[Wu et al, CVPR'18]
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(and many others...)



Many exciting results

Linear evaluation of representations
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Semi-supervised learning

SIMCLR as an example: strong semi-supervised learners, outperforms

AlexNet with 100X fewer labels.
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Label fraction

Method Architecture 1% 10%
Top 5

Methods using other label-propagation:

Pseudo-label ResNet50 51.6 824
VAT+Entropy Min. ResNet50 47.0 834
UDA (w. RandAug) ResNet50 . 88.5
FixMatch (w. RandAug) ResNet50 - 89.1
S4L (Rot+VAT+En. M.)  ResNet50 (4 x) - 91.2
Methods using representation learning only:

InstDisc ResNet50 392 774
BigBiGAN RevNet-50 (4x) 55.2 78.8
PIRL ResNet-50 572 838
CPC v2 ResNet-161(%) 77.9 91.2
Ours ResNet-50 75.5 87.8
Ours ResNet-50 (2x) 83.0 91.2
Ours ResNet-50 (4x) 85.8 92.6

Table 7. ImageNet accuracy of models trained with few labels.



Transfer learning

SIMCLR as an example: matches or surpasses supervised ImageNet
pretraining when transferring to other classification tasks.
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Food CIFAR10 CIFARI00 Birdsnap SUN397 Cars Aircraft VOC2007 DTD Pets Caltech-101 Flowers

Linear evaluation:

Self-supervised 76.9 95.3 80.2 48.4 659 600 61.2 84.2 78.9 89.2 93.9 95.0
Supervised 75.2 95.7 81.2 564 649 688 63.8 83.8 78.7 923 94.1 94.2
Fine-tuned:

Self-supervised 89.4 98.6 89.0 78.2 68.1 921 87.0 86.6 77.8 92.1 94.1 97.6
Supervised 88.7 98.3 88.7 77.8 67.0 914 88.0 86.5 78.8 93.2 94.2 98.0
Random init 88.3 96.0 81.9 77.0 537 913 848 69.4 64.1 82.7 72.5 92.5

Table 8. Comparison of transfer learning performance of our self-supervised approach with supervised baselines across 12 natural image
classification datasets, for ResNet-50 (4 x ) models pretrained on ImageNet. Results not significantly worse than the best (p > 0.05,
permutation test) are shown in bold. See Appendix B.6 for experimental details and results with standard ResNet-50.

* The two datasets, where the supervised ImageNet pretrained model is better, are Pets and Flowers, which share a portion of labels with ImageNet.
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Contrastive learning
with negative examples
(with SImCRL and MoCo as examples)
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SImCLR

[Chen et al, A simple framework for contrastive learning of visual representations, ICML'20]

Maximizing the agreement of representations under data transformation,
using a contrastive loss in the latent/feature space.

Maximize Agreement

Zy - > Zj
9() T T (")
h; +Representation— h;

Figure 2. A framework for contrastive representation learning.
Two separate stochastic data augmentations ¢, ¢ ~ T are applied
to each example to obtain two correlated views. A base encoder
network f(-) with a projection head g(-) is trained to maximize
agreement in latent representations via a contrastive loss.
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SImCLR component: data augmentation

We use random crop and color distortion for augmentation.

Examples of augmentation applied to the left most images:

Maximize Agreement ,“:w" - o] 1~ 3
i 1 * b
3
9() T9() L -
h —_— P —— — — - e

h; +Representation—
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SImMCLR component: encoder

Maximize Agreement

Z, - Z.'
9() T9()
h; +Representation— h;
f() f()
x; T;
N T

34-layer residual

34-layer plain

f(x) is the base network that computes internal
representation.

We use (unconstrained) ResNet in this work.
However, it can be other networks.
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SimCLR component: projection head

g(h) is a projection network that project
representation to a latent space.

We use a MLP (with non-linearity).

output layer
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SimCLR component: contrastive loss

Maximize agreement using a contrastive task:

Given {x_k} where two different examples x_i
and x_j are a positive pair, identify x_j in
{x_k} {kl=i} for x_i.

[ Maximize Agreement }
Zi j

h; +Representation— h;

-

]
’ ‘4
oa ] - .
s b . A= B
—erere '_v_‘l. =
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-
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Original image crop 1 crop 2 contrastive image

Let sim(u,v) = u'v/||ul|||v||

Loss function: exp(sim(z;, 2;)/7)

Zigl 1 (i) €xp(sim(z;, 1) /7)

Ei,j = — IOg
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SImMCLR pseudo code and illustration

Algorithm 1 SimCLR’s main learning algorithm.

input: batch size N, temperature 7, form of f, g, 7.
for sampled mini-batch {z; }?_, do
forallk € {1,...,N} do

draw two augmentation functions t ~ 7, t' ~T

# the first augmentation

Top—1 = t(wk)

hor—1 = f(@x2r-1) # representation

2ok—1 = g(hox_1) # projection

# the second augmentation

igk = t’(wk)

hox = f(Zak) # representation

zor = g(har) # projection
end for
forallie {1,...,2N}andj € {1,...,2N} do

si.i = z; zi/(7llzll|lz;]) # pairwise similarity
end for

define /(7, j) as —s; ; + log Zi:l Lk €xp(si k)
L= [6(2k—1,2k) + £(2k, 2k —1)]
update networks f and g to minimize £
end for
return encoder network f GIF credit: Tom Small
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More negative examples: MoCo

e SIMCLR use images in the same mini-batch as negative
examples, so batch size and negatives are tied

e MoCo decouples batch size and negatives by introducing
a momentum encoder, and a queue of activations.

contrastive loss

A

(—> similarity 47
Momentum encoder update with:
q ko k1 ko ...
T queue T Ok < mbx + (1 — m)bq
oTann (instead of backpropagation)

encoder s

4 ( \ .
gy 2p g5 g5V

[He et al, Momentum Contrast for Unsupervised Visual Representation Learning, CVPR’20]
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Contrastive learning
without negative examples
(Using BYOL and SimSiam as main examples)
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BYOL

e With momentum encoder and additional predictor
network on top of the projection head, the model doesn’t
collapse even without negative examples.

view representation projection prediction
; fo g6 qe
input | |
image t v :l Yo I > 29 q6(20) | online
¢ ‘ 2 I :l Ye | :I 2 i‘ﬁ;;» sg(z;) ¥  target
fe u 9¢ sg

/
Loe 2 Jaaten) - 5 =2 — 2. 22020

lgo(z0) [ - [122]l.
[Grill et al, Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning, NeurlPS’20]
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BYOL

e Both predictor and momentum encoder play an
important role in preventing collapse

Target Thase Top-1
Constant random network 1 18.8+0.7
Moving average of online  0.999 69.8
Moving average of online 0.99 72.5
Moving average of online 0.9 68.4
Stop gradient of online' 0 0.3

(a) Results for different target modes. "In the stop gradient of
online, T = Tpase = 0 is kept constant throughout training.

[Grill et al, Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning, NeurlPS’20]



SimSiam
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e Further simplifies the framework by removing the

momentum encoder.

> similarity <«€—

X
predictor A _ stop-grad
ﬁ Y
encoder f encoder f
| y )
image T

Algorithm 1 SimSiam Pseudocode, PyTorch-like

# f: backbone + projection mlp
# h: prediction mlp

for x in loader: # load a minibatch x with n samples
x1, x2 = aug(x), aug(x) # random augmentation
zlds Zz2 f(x1), f£(x2) # projections, n-by-d
pl, p2 h(zl), h(z2) # predictions, n-by-d

L = D(pl, z2)/2 + D(p2, zl1)/2 # loss

L.backward() # back-propagate
update (£, h) # SGD update

def D(p, z): # negative cosine similarity
z = z.detach() # stop gradient

p normalize (p, dim=1) # 1l2-normalize
z normalize(z, dim=1) # 1l2-normalize
return —(p*z).sum(dim=1) .mean ()

[Chen and He, Exploring Simple Siamese Representation Learning, CVPR 2021]
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SimSiam
e Key ingredients:
o No momentum encoder but still has stop-gradient
m equal to setting ema factor to O.
o Careful design of predictor:
m Batch Norm & bottleneck structure & no Ir decay

pred. MLP h | acc. (%) proj. MLP’s BN | pred. MLP’s BN
baseline lr with cosine decay 67.7 case hidden output | hidden output | acc. (%)
(a) no pred. MLP 0.1 (a) none - - - - 34.6
(b) fixed random init. 1.5 (b)  hidden-only v = v = 67.4
(c) Ir not decayed 68.1 (c)  default v v v - 68.1
(d) all v v v v unstable

Table 1. Effect of prediction MLP (ImageNet linear evaluation
accuracy with 100-epoch pre-training). In all these variants, we
use the same schedule for the encoder f (Ir with cosine decay).

Table 3. Effect of batch normalization on MLP heads (Ima-
geNet linear evaluation accuracy with 100-epoch pre-training).

[Chen and He, Exploring Simple Siamese Representation Learning, CVPR 2021]
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Avoid collapse by using other batch statistics

e We can avoid representation collapse using neither

negative examples nor predictor: other batch statistics
can work.

loss:
Ot
Representations
(for transfer tasks)
Distorted A Codes _
images ; Embeddings A 3 Z 5+ Q softmax softmax
=— — Empirical Target -
: Cross-corr. Cross-corr. 5 \
ema

Al Ll 7A
Images ¥ }( 4 \ C z
o _ el Lor student gg; > | teacher gg
T~T fo o ---.<—>

va] C
s redictio
— < > \ o
y B L} ZB/ feature ‘) Z, — Q, ° @
dimension Codes °
Encoder  Projector

Barlow Twins
[Zbontar et al, ICML'21]

SWAV

DINO
[Caron et al, NeurlPS’20]

[Caron et al, CVPR"21]

Also: SWD distribution loss, [chen et al, intriguing properties of contrastive losses, 2021]



N Google Research

Some important design choices
in contrastive learning
(using SIMCLR as main example)
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Evaluation setup

Main dataset for self-supervised pretraining:
e ImageNet (without labels)
Two evaluation protocols for the remaining slides

e Linear classifier trained on learned features
e Fine-tune the model (with few labels)
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Important design choice in Contrastive Learning:

1. Data Augmentation is critical
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A set of transformations studied in SImCLR

Systematically study a set of augmentation

(f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

* Note that we only test these for ablation, the augmentation policy used to train our models only involves random crop (with flip and resize) + color distortion + Gaussian blur.

[Figures from SimCLR paper]



Google Research

Studying single or a pair of augmentations

e ImageNet images are of different resolutions, so random crops are
typically applied.
e Toremove co-founding
o First random crop an image and resize to a standard resolution.
o Then apply a single or a pair of augmentations on one branch,
while keeping the other as identity mapping.
o This is suboptimal than applying augmentations to both branches,
but sufficient for ablation.

No augm‘eM/g@vor a pair of
augmentations

Crop and

esizetoa
stand size:
224x224x3
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Composition of augmentations are crucial

Composition of crop and color stands out!

Crop
-50

Cutout

.‘_5 40
= Color
£
3
€ Sobel 30
§
= )
“ Noise 20
~

Blur

Rotate

o®

A\ o
R AR G

xe e
o P\‘e(ag

2nd transformation

(a) Without color distortion. (b) With color distortion.

Figure 5. Linear evaluation (ImageNet top-1 accuracy) under in-
dividual or composition of data augmentations, applied only to
one branch. For all columns but the last, diagonal entries corre-
spond to single transformation, and off-diagonals correspond to
composition of two transformations (applied sequentially). The
last column reflects the average over the row.

Figure 6. Histograms of pixel intensities (over all channels) for
different crops of two different images (i.e. two rows). The image
for the first row is from Figure 4. All axes have the same range.

[Figures from SimCLR paper]
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Random cropping gives the major learning signal

Simply via Random Crop (with resize to standard size), we can mimic (1)
global to local view prediction, and (2) neighboring view prediction.

This simple transformation defines a family of predictive tasks.

_____

(a) Global and local views. (b) Adjacent views.

Figure 3. By randomly cropping and resizing images (solid rect-
angles) to a standard size, we sample contrastive prediction tasks
that mimic global to local view (B — A) or neighbouring view
(D — C) prediction.

[Figures from SimCLR paper]
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An enhancement of random cropping

Instead of taking two crops of the same size, one may take multiple crops
of different sizes.

Top-1 A
Method 2x224 2x160+4x96 100 epOChS 300 epOChS
Supervised 76.5 76.0 —0.5 . . .
multi-crop top-1 time top-1 time mem.

Contrastive-instance approaches

SimCLR 68.2 70.6 +2.4 2 x 2242 67.8 153h 725 459h 9.3G
2 2

Clustering-based approaches 2><2242 + 2><962 71.5 17.0h 74,5 51.0h 10.5G
SeLa-v2 67.2 71.8 +4.6 2x224° 4+ 6x96 73.8 20.3h 759 60.9h 12.9G
DeepCluster-v2  70.2 74.3 +4.1 2x224%2 4+ 10x96% 74.6 242h 76.1 72.6h 154G

SwAV 70.1 74.1 +4.0

DINO [Caron et al, CVPR 2021]
SwAV [Caron et al, NeurlPS 2020]
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Patch masking as additional augmentation

Recently, there are methods leveraging image patch masking as additional
augmentation. Some examples:

Mask, augment Gaussian noise Replace masked patches Reconstruct
P e |
mm WM =
L gleus) - Input View 1 . ’ + .- .- . - ..‘,,.
R S A -
- P _ES '_F = Ul ]
v i1 &eLs) L ELMIM e | R - - bt
H A " ~patch| .
/ - (frady
S M
\ e | i
i
v ] <o TR o o 5 T . EE. .
ufﬂtf" d | iR 5y H N ViT -.‘ I
e £ View 2 -+ §_m= _EE B ENY
[MASK] = [ ] .= [ | N | decoder
s el

Mask, augment Gaussian noise Replace masked patches Reconstruct

[zhou etal, IBOT, ICLR22] [Anonymous authors, CAN, ICLR’23 submission]
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Important design choice in Contrastive Learning:

2. Projection head is important
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A nonlinear projection head improves the representation quality
of the layer before it

Compare projection heads (after average pooling of ResNet) in SImCLR:

e |dentity mapping
e Linear projection

e Nonlinear projection with one additional hidden layer (and ReLU
activation) 70

50 | Projection Even when non-linear projection is
i : ;‘(’)‘s?rnear used, the layer before the projection
m=None head,h,is still much better (>10%) than

30 - the layer after,z=g(h).
%L 1% ,Lc)b ‘)\' b« Qb«% y g( )

Output dlmensmnallty

Top 1l

Figure 8. Linear evaluation of pretraining with different projection

heads. The dimension of h (before projection) is 2048. [Figures from SImMCLR pape]
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A nonlinear projection head improves the representation quality
of the layer before it

To understand why this happens, we measure information in h and z=g(h)

: Representation
What to predict? Random guess
b : h g(h)
Color vs grayscale 80 99.3 97.4
[ Rotation 2D 67.6 25.6 |
Orig. vs corrupted 50 99.5 59.6
Orig. vs Sobel filtered 50 96.6 56.3

Table 3. Accuracy of training additional MLPs on different repre-
sentations to predict the transformation applied. Other than crop
and color augmentation, we additionally and independently add
rotation (one of {0°,90°, 180°,270° }), Gaussian noise, and So-
bel filtering transformation during the pretraining for the last three
rows. Both h and g(h) are of the same dimensionality, i.e. 2048.

Contrastive loss can remove/damping rotation information in the last
layer when the model is asked to identify rotated variant of an image.
[Figures from SimCLR paper]
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Important design choice in Contrastive Learning:

3. Model size
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Unsupervised contrastive learning benefits (more) from

bigger models

80
%
*¥5up. R50(2x) Y
#¥sup. R50 [y
| R50(4x)
 J
70 0R101(2xﬁ152(2x)
*nsor  ®RS0(2x) :
e ° ®R152 eaiish
o R101 .
2e i R18(4x)
= R50
.R34(2x)
60
® R18(2x)
3| o34
50 | *R18

0 50 100 150 200 250 300 350 400 450
Number of Parameters (Millions)

Figure 7. Linear evaluation of models with varied depth and width.

Models in blue dots are ours trained for 100 epochs, models in red
stars are ours trained for 1000 epochs, and models in green crosses
are supervised ResNets (He et al., 2016).”

[Figures from SimCLR paper]
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Bigger models are more label-efficient

e Using pre-training + fine-tuning, “the fewer the labels, the bigger the
model”

e Increasing the size of model size by 10X, it reduces required labels to
achieve certain accuracy by 10X.

Relative improvement (%) ImageNet top-1 (%)

“6 25r L
Label RS TR TPV PPORALS PRRECOBAYOTT <f " | ois P RPPPPRTTRLLE
;\3 Lf? fraction 80 EResaeenens -
o~ 1w
=5 20fF - 1% ° i D TR S e -
€S -.- 10% > I5H" g -
g: 15} ~=- 100% o "
3 g a 370 -{/K .
- - o
g.a_; 10} —_,—4”" < Label
P SN (IS O P '_u‘ 65 fraction
2S W 5 A TEBTET o peeeer = —— 1%
£8 5 | il
E— : ~m 100%
0 50 100 150 200 250 50 100 150 200 250
Number of parameters (million) Number of parameters (million)

[Figures from SimCLRv2 paper]
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Distill/Self-train with unlabeled data to reduce the model size

Unsupervised pre-training
with a contrastive loss

$
| 1|
Projection l A I
head 1 . ~ Supervised . Unsupervised
[ » } > fine-tuning > dlStIllatIC.)n.Of
task predictions
Task-agnostic L E
: ask-specific
Big CNN CNN
1 Small fraction of A
data that has
class labels
Unlabeled Unlabeled
data data

[Figures from SimCLRv2 paper]
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Distillation / self-training with unlabeled data

e To distill the task specific knowledge, we use the teacher model to
provide task-specific labels on unlabeled examples, based on which
train a student model:

el = — 3 [ZPT@m;r) log P5<y|wz-;f>]
x;€D Yy

e Evaluation on ImageNet with only 1%/10% labels (all images).

Distillation on labeled dataset alone is not sufficient.

Label fraction
Method 1% 10% /

Label only

Label + distillation loss (on labeled set)

Label + distillation loss (on labeled+unlabeled sets)
Distillation loss (on labeled+unlabeled sets)

Using unlabeled examples largely improve distillation.

[Figures from SimCLRv2 paper]
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Distillation with unlabeled data improves all model sizes

e Both self-distillation and big-model-to-small-model distillation help.
e With 10% of labels, SImMCLRv2 can achieve better performance than
standard supervised training with 100% of labels.

ImageNet (label fraction: 10%)

80}
~ 78}
2 T -
S ‘ Self-distillation / self-training
3 °
S
S 74}
©
Bl e Distillation from the biggest
2 —e— SimCLRv?2 fine-tuned self-distilled model
70} -a- SimCLRv2 self-distilled
~® SimCLRv2 distilled
—a&— Supervised (all labels)
68k

27 46 62 157 274 370
Number of parameters (million) . _
[Figures from SimCLRv2 paper]
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Important design choice in Contrastive Learning:

4. Some hyper-parameters (e.g., in
contrastive loss)



Tune normalization and temperature

Compare variants of contrastive (NT-Xent) loss in SimCLR

L2 normalization with temperature scaling makes a better loss.
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Contrastive accuracy is not correlated with linear evaluation when 12

norm and/or temperature are changed.

¢ norm? 7 | Entropy Contrast. task acc. | Top 1
0.05 1.0 90.5 59.7

Yes 0.1 4.5 87.8 64.4
0.5 8.2 68.2 60.7

1 8.3 59.1 58.0

N 10 0.5 91.7 372

@ 100 | 05 92.1 57.0

Table 5. Linear evaluation for models trained with different choices
of £5 norm and temperature 7 for NT-Xent loss. The contrastive
distribution is over 4096 examples.

[Figures from SimCLR paper]
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Contrastive learning benefits from longer training

Compare epochs & batch size in SIMCLR (hyper-parameter tuned with
batch size of 4096)

70.0

67.

65.0
62.5
—
£60.0
E Batch size
57.5 256
512
55.0 1024
2048
52.5 4096
8192
50.0 EEEEEN EEEEES

100 200 300 400 500 600 700 800 900 1000
Training epochs

w

Figure 9. Linear evaluation models (ResNet-50) trained with dif-

ferent batch size and epochs. Each bar is a single run from scratch. , _
[Figures from SimCLR paper]
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Small batch sizes work well too with good hparams tuning

Original SIMCLR was developed with large batch size, so the hyper-params
were not optimized for smaller ones in the above batch size study.

With proper tuning on learning rate, temperature, and deeper projection
head, the difference in batch sizes becomes smaller.

Table D.3: Linear evaluation accuracy (top-1) of ResNet-50 trained with different losses on ImageNet
(with 3-layer projection head).

Epoch 100 200 400 800
Loss Batch size

512 66.6 684 700 71.0
NT-Xent 1024 66.8 689 70.1 709

2048 668 6_9.1 704 71.3_

Table from “Intriguing Properties of Contrastive Losses” (Chen et al, 2020)
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Some open challenges for contrastive
learning

Based on “Intriguing Properties of Contrastive Losses”
(https://arxiv.org/abs/2011.02803)



https://arxiv.org/abs/2011.02803
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Single object vs Multi objects

e [t has been conjectured that many existing contrastive learning is
taking advantage of dataset bias (e.g. in ImageNet): there’s a
single/dominant object in the center, and random crops typically share
object identity.

e SO we construct a dataset of multiple mnist digits

7 / d +q
,f X'V -z
b7 -7 5

(a) 4 d1g1ts random placement.

X 09
73

(c) 4 digits, in-grid placement.

[Figures from https://arxiv.org/abs/2011.02803]
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Single object vs Multi objects

e The results below show: SImCLR is able to learn just fine even with
multiple mnist digits

Table 3: Top-1 linear evaluation accuracy (%) for pretrained ResNet-18 on the MultiDigits dataset.
We vary the number of digits placed on the canvas during training from 1 to 16. During evaluation
only 1 digit is present. As a baseline, a network with random weights gives 18% top-1 accuracy.

Placing of digits Number of digits (size 28 x 28)
1 2 4 8 12 16
Sieivised Random 995 995 993 994 989 98.3
P In-grid 99.5 99.6 99.5 993 98.6 924
SimCLR Random 089 989 990 989 982 0964

In-grid 98.3 98.6 99.1 992 99.1 983

[Figures from https://arxiv.ora/abs/2011.02803]
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Global feature vs local features

e Isinstance-based contrastive learning able to learn local features?

o Take a middle layer of SImCLR learned ResNet, do clustering
R

2 Clusters 8 Clustrs

=)

SimCLR

[Figure from tps://arxiv.org/abs/2011.02803]
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Global feature vs local features

e SImCLR, despite trained with image-level loss, learns local features.

o (although, local contrastive learning can still help)

2 Clusters

SimCLR

[Figures from https://arxiv.org/abs/2011.02803]
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Feature suppression limits contrastive learning

e Competing features are different features shared between
augmented views:

In common: dog class, color distribution, .. In common: dog class, ..

— A

e Some features (e.g. color distribution) may suppress the learning of
other set of features (e.g. object class)

e Can we quantitatively study the impact (suppression effect) of
competing features?
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Larger objects suppress the learning of smaller objects

We place two MNIST digits of randomly on a canvas, and increase the size

of one digit while keeping the other fixed.

‘«' EEBAD

(b) Two MNIST digits randomly placed on a shared canvas (of size 112 x 112). The two digits can have the same size
(upper row) or different sizes (lower row), and digits of different sizes can be considered as competing features. We fix the
size of one digit and vary the other.

Table 2. Top-1 linear evaluation accuracy (%) for pretrained ResNet-18 on the MultiDigits dataset. We fix the size of st digit while
increasing the size of the 2nd digit. For SimCLR, results are presented for two temperatures. Accuracies suffered from a significant drop
when increasing 2nd digit size are red colored.

2nd digit size

2020 30x30 40x40 50x50 60x60 70x70 80 x 80
S— Ist digit (20 x 20)  99.1 99.2 99.2 99.2 99.1 99.1 99.0
REPEIYIRE 2nd digit 99.1 99.5 99.5 99.6 99.5 99.5 99.6
SimCLR Ist digit (20 x 20)  97.8 97.6 96.2 96.5 88.5 74.5 39.9
(r = 0.05) 2nd digit 97.8 97.9 97.8 98.3 98.2 97.7 98.2
SimCLR Ist digit (20 x 20)  98.7 98.8 98.3 87.5 249 19.8 203
(r=0.2) 2nd digit 98.7 99.2 99.2 99.0 99.1 98.9 99.4
Random network st digit (20 x 20) 16.5 16.7 16.6 16.6 16.6 16.9 16.5
(untrained) 2nd digit 16.5 19.1 21.9 24.1 26.5 28.1 29.0
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Digit features vs Object features

Adding competing features using channel addition: overlay a controlled
number of unique MNIST digits on ImageNet images.




Easy-to-learn features suppress other features
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Standard SImCLR couldn’t learn features that are good for linear evaluation

on both MNIST digits and ImageNet classes.

10 Temperature = 0.2
. BN |mageNet

B MNIST

Temperature = 0.05 Temperature = 0.1

1.0

0.8

0.6

0.4

0.2

0 20 23 26 29 212 21560k
Number of unique MNIST digits Number of unique MNIST digits Number of unique MNIST digits

0 0.0 0.0
0 20 23 26 29 212 21560k 0 20 23 26 29 212 21560k

However, supervised learning of ImageNet classes is fine —

Supervised
1.0 B
BN mageNet
0.8 mE MNIST

0.0
0 20 22 23 26 29 21221560k
Number of unique MNIST digits



RGB features vs random bits
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Adding competing features using channel concatenation: extra channels
are controllable random bits that are shared between views.

1

1

1

B —)

Augmented

Random bits
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A few random bits suppress features in RGB

NT-Xent (t=0.05) NT-Xent (t=0.1) NT-Xent (t=0.2) VAE
1.0 1.0 1.0 1.0
batch_size
0.8 0.8 0.8 128 0.8
—— 256
I — 512 =
£0.6 0.6 0.6 o2k £0.6
o e
. a Q batch_size
MNIST:
256
0.2 0.2 0.2 0.2 —533
— 1024
0.0 0.0 0.0 0.0
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
Bits Bits Bits Bits
(a) MNIST. Q)) MNIST using VAE. /
70 NT-Xent 70 NT-Xent (MoCo) 7 SWD (uniform hypersphere)
!\x T ; T ! A
—a ol 0 \-
% g e~ 0.05 g B e 0.05 2 — 05
. = E —o— 0.1 = —— 0.1 = : —— 5.0
ImageNet' S 40 \ —=— 0.2 i3 40 1 —=— 0.2 & 40 —=— 50.0
— 5 — — \
1 1 1
o o o
o o o
= 20 ~ 20 = 20 \
0 - n L — 0 - — 0 Ty ———
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
Bits Bits Bits

(c) ImageNet
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Final remarks

Contrastive learning is a family of effective self-supervised learning
methods, which can learn representations on par or better than
supervised learning.
Some key ideas in contrastive learning:
o Define loss (e.g., max agreement) in learned abstract/latent space.
o Augmentations as ways to define the prediction task.
o Contrastive loss with negative examples to prevent collapse.
o Other mechanism (e.g., momentum encoder, stop-gradient) to
prevent collapse.
Some open challenges for existing contrastive learning techniques
o Feature suppression
o Others, e.g., selection of data augmentations
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Thank Youl




