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Self-supervised pretraining Efficient generalization

Neural representations

- Enable intelligent behavior

- Require minimal supervision

- Are generally applicable

Contrastive learning (Chen, 2020)



Is the current self-supervised paradigm too simple?

maximize similarity

SimCLR BYOL SwAV DINO
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→ invariance across views dampens instance selectivity 

maximize similarity

Is the current self-supervised paradigm too simple?
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Fine-tune for object detection, segmentation

Neural representations

- Enable intelligent behavior

- Require minimal supervision

- Are domain-agnostic

Pretrain a ResNet-50 on ImageNet

Is the current self-supervised paradigm too simple?

10x more computation! 



● Break images into their constituent objects
● Apply contrastive learning to each object rather than each image

Hypothesis for handling real-world data



1. Knowledge of objects accelerates and improves representation learning

→ DetCon objective (ICCV, 2021)

2. Knowledge of objects can be extracted from learned representations

→ Odin framework (ECCV, 2022)

3. Videos can be used to learn strong image representations

→ VITO framework (arXiv, 2022)

 

Outline

Better representations

Better object knowledge



ICCV 2021

Efficient visual pretraining 
with contrastive detection
Olivier Hénaff, Skanda Koppula, Jean-Baptiste Alayrac,
Aaron van den Oord, Oriol Vinyals, João Carreira



Contrastive learning
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Contrastive learning

Contrastive objective

Global pooling

Convolutional 
features

Encoder

Augmented 
views

Training image

SimCLR, Chen et al. 2020

1 positive pair per image

1 negative sample per image

● Each image contributes a single 
positive pair and negative sample

● Positive pairs can be    
semantically different
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Contrastive detection

DetCon objective

Masked pooling

Convolutional 
features

Encoder

Augmented 
views

Training image and 
heuristic masks

M positive pairs per image

M negative samples per image

● Each image contributes multiple 
positive pairs and negative samples

● Positive pairs are spatially aligned 



Unsupervised segmentation
Spatial heuristic Heuristic: FH Heuristic: MCG

Felzenszwalb & Huttenlocher 2004

Arbeláez et al. 2014



Unsupervised segmentation
Heuristic: FH

Felzenszwalb & Huttenlocher 2004

skimage.segmentation.felzenszwalb
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Transfer to COCO detection and instance 
segmentation using Mask-RCNN 
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Fine-tune for object detection, segmentation

Neural representations

- Enable intelligent behavior

- Require minimal supervision

- Are generally applicable

Self-supervised pretraining across modalities 

Can the self-supervised paradigm stay general?



ECCV 2022

Object discovery and 
representation networks
Olivier Hénaff, Skanda Koppula, Evan Shelhamer, Daniel Zoran, 
Drew Jaegle, Andrew Zisserman, João Carreira, Relja Arandjelović
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Odin: Object discovery and representation networks

Better representations

Better segmentations
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Transfer learning

● Pretrain ResNet-50 on ImageNet using self-supervised objective
● Fine-tune for COCO object detection and instance segmentation 

using Mask-RCNN ✅
● Fine-tune for PASCAL and Cityscapes semantic segmentation ✅
● Fine-tune for COCO object detection using FCOS* ✅
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● Pretrain ViT-B/8 on ImageNet using self-supervised objective
● Evaluate on COCO, cluster features using k-means, report best overlap



Fine-tune for object detection, segmentationSelf-supervised pretraining 

Object knowledge can be extracted from learned representations

Better representations

Better segmentations

Odin
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Can SSL leverage videos to learn good image representations?

Natural videos provide

- Rich image augmentations

- Strong segmentation cues 
from motion



Self-supervised pretraining 

Can SSL leverage videos to learn good image representations?
Fine-tune for object detection, segmentation

Natural videos provide

- Rich image augmentations

- Strong segmentation cues 
from motion

Yet they have yet to yield 
strong image representations!

(as evaluated by scene 
understanding tasks)



arXiv 2022

Self-supervised video pretraining 
yields strong image representations 
Nikhil Parthasarathy, Ali Eslami, João Carreira, Olivier Hénaff



Self-supervised pretraining on images or video

Can SSL leverage videos to learn good image representations?

A strong contrastive baseline

- MoCLR: best of SimCLR,  
MoCo, and BYOL (Tian, 2021) 

- Frame x sampled from image 
datasets or videos

Online Target: 
EMA(Online)



Self-supervised pretraining on images or video

Can SSL leverage videos to learn good image representations?
Fine-tune for object detection, segmentation

A strong contrastive baseline

- MoCLR: best of SimCLR,  
MoCo, and BYOL (Tian, 2021) 

- Frame x sampled from image 
datasets or videos

Online Target: 
EMA(Online)

Fine-tune on 

- Semantic segmentation 
(PASCAL or ADE20K)

- Object detection (COCO or LVIS)
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Private & Confidential

Procedure for filtering uncurated video datasets

1) Query internet for ImageNet categories (~5 million videos)

2) Filter out videos less than 10s long

3) Run an ImageNet classifier on the first 100 frames of each video to verify they 
contain stated category (~1.2 million videos)

VideoNet data pipeline
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VITO closes the gap with ImageNet MoCLR

Results: ablating the components of VITO
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Results: what does the attention pooling learn?

Due to the contrastive loss, VITO must learn to attend to content that is:

- Stable (or predictable) over time
- Unique or discriminative relative to content from other videos

View 1

View 2
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Due to the contrastive loss, VITO must learn to attend to content that is:

- Stable (or predictable) over time
- Unique or discriminative relative to content from other videos

This also enables semantic binding of content

View 1

View 2

Results: what does the attention pooling learn?
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Results: what does the attention pooling learn?



Private & Confidential

VITO vs. other frame-level SSL objectives highlights importance of VITO components

→ data curation, attention pooling, random-crop scale

Results: comparison to prior video-to-image methods
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VITO vs. other frame-level SSL objectives highlights importance of VITO components

→ data curation, attention pooling, random-crop scale

VITO also outperforms recent multimodal methods 

Results: comparison to prior video-to-image methods
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VITO also outperforms prior art with existing video datasets (Audioset),

but VideoNet provides further gains  

Results: comparison to prior video-to-image methods



Private & Confidential

Results: VITO closes the gap with ImageNet pretraining



1. Knowledge of objects accelerates and improves representation learning

→ DetCon objective (ICCV, 2021)

2. Knowledge of objects can be extracted from learned representations

→ Odin framework (ECCV, 2022)

3. Videos can be used to learn strong image representations

→ VITO framework (arXiv, 2022)

 

Conclusion

Better representations

Better object knowledge



Thanks! 


