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Slide credits:

Many thanks taall the great computer vision researchers on which this
presentation relies on.

Most material is taken from tutorials at NIPS, CVPR and BMVC confere
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A ConvolutionaNetwors(ConvNet}$for ImageClassification

c Opera‘“ons in each |a r Krizhevsk,yA.,SutskeverI. and Hinton, G. E.,
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¢ Architecture Neural NetworksNIPS 2012
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A Representations for Video Classification

¢ Handdesigned features Wang et al, ActionRecognition by Dense
‘\ TrajectoriesCVPR 2011

¢ SpatiotemporalConvNets | Karpathyet al., Largescale Video Classification with
q ConvolutionaNeural Networks, CVPR 2014

—

¢ TwostreamConvNets K.Simonyar& A. ZissermanTwo-Stream
‘ Convolutional Networks for Action Recognition in

VideosNIPS2014
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One application: Image retrieval




Deep Learningbreakthrough in visual and speech recognition
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Alot of buzz about Deep Learning
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https://www.youtube.com/watch?v=Nu-nlQqFCKg#t=03m00s
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What are the weakesinkslimiting performanc@

0 Replace eachomponentof the deformable part model
detector with humans

0 Good Features (part detection) and accurate Localization
(NMS) are most important
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Typical visual recognition pipeline

A Select / develofeatures
A Addon top of this Machine Learning farulti-class
recognition and train classifier

| Trainable
Image/Video e Object
Pixels —> Classifier = ..
e.g SVM




Intuition Behind Deep Neural Nets

A Build features automatically based on training data

A Combine feature extraction and classification




Some Key Ingredients
for Convolutional
Neural Networks



Neural networks trained via backpropagation

B-Prop

Compare outputs with
correct answer taet

error signal L
Vo0 FProp

Backpropagate
error signal to get
derivatives folearning
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parameters ’

Training hiddenlayers

é F~Prop/ B-Prop (features)
Learningoy =
stochastiogradient ~ Norrlinearity
descent(SGD):

A A) Compute loss L on weights

small mintbatch of data
A B) Compute gradient w.r.t.
A C) Use gradient to update(makea stepin the oppositedirection) ... v

<= |Nput vector |



Neural networks trained via backpropagation

Compare outputs with
correct answer to get
error signal
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Backpropagate

error signal to get
derivatives folearning
parameters

Training

A FProp/ B-Prop

A Learningoy SGD:

A A)Compute loss on
small minibatch

A B)Compute gradient w.r.t.

A C) Use gradient to update

<== |nput vector

Credit: G. Hinton



Neural networks trained via backpropagation

Compare outputs with
correct answer to get
error signal

Dog

Backpropagate

error signal to get
derivatives folearning
parameters

Training

A FProp/ B-Prop

A Learningoy SGD:

A A) Compute loss on
small minibatch

A B) Compute gradient w.r.

A C) Use gradient to update

<== |nput vector

Credit: G. Hinton



Neural networks testing
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Neural networks testing

Credit: G. Hintor



Motivation: Imagessa compositionof localparts
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Joo many parameters!

Credit: M. ARanzato



