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Abstract

This paper presents two fundamental contributions that
can be very useful for any autonomous system that re-
quires point correspondences for visual odometry. First,
the Spatio-Temporal Monitor (STM) is an efficient method
to identify good features to track by monitoring their spatio-
temporal (x-y-t) appearance without any assumptions about
motion or geometry. The STM may be used with any spatial
(x-y) descriptor, but it performs best when combined with
our second contribution, the Histogram of Oriented Mag-
nitudes (HOM) descriptor, which is based on spatially ori-
ented multiscale filter magnitudes. To fulfil the real-time re-
quirements of autonomous applications, the same descrip-
tor can be used for both, track generation and monitoring,
to identify low-quality feature tracks at virtually no addi-
tional computational cost. Our extensive experimental val-
idation on a challenging public dataset demonstrates the
excellent performance of STM and HOM, where we sig-
nificantly outperform the well known “Good Features to
Track” method and show that our proposed feature qual-
ity measure highly correlates with the accuracy in structure
and motion estimation.

1. Introduction
Many computer vision applications rely on good fea-

tures to track: Visual odometry [22], Structure from Motion

[23], Simultaneous Localization And Mapping (SLAM) [8],

and Augmented Reality [15] require the robust and pre-

cise tracking of a set of feature points. Most of these ap-

proaches combine interest point detectors with feature de-

scriptors to yield detector-descriptor-based tracking, while

other approaches estimate the motion based on the optical

flow equation [11]. In all cases, “Good Features To Track”

- GFTT - have to be detected to obtain robust and precise

results. However, even highly salient points in individual

frames might still be bad features to track. Therefore, GFTT

can only be identified by a temporal monitoring of feature

quality. This phenomenon has first been addressed in the

seminal paper by Shi and Tomasi [25] almost 20 years ago.

In more recent work, it has been a common strategy to re-

move outliers at higher levels in the processing chain by in-

corporating geometric constraints, e.g. by using RANSAC

[22, 15], or to use positional tracking information from pre-

vious frames, e.g. with Kalman [8], or particle filters [9].

These methods use prior information on scene geometry

and motion smoothness, and therefore may restrict the gen-

eral applicability in dynamic scenarios.

In contrast to these recent developments, we revisit the

original idea of filtering GFTT in a bottom-up, model-free

manner. We aim at eliminating bad feature tracks at the low-

est level of the processing chain, without any priors about

the expected motion or the scene geometry. Shi and Tomasi

[25] analyse the change of appearance of a feature between

the first and the current frame by calculating the target’s rms

residue and consequently reject a feature if its dissimilarity

grows too large. Before the calculation of the rms residue,

they apply an affine warping to account for the spatial ap-

pearance change of the target. In an extension of the original

GFTT method, Tommasini et al. [26] estimate the distribu-

tion of this residual and automatically select a threshold for

feature rejection. Although the GFTT approach is invari-

ant to affine changes of the tracking target (e.g. caused by

camera viewpoint or orientation change), our experimental

results demonstrate that the selection of a good global re-

jection threshold is difficult for GFTT.

In this paper, we address the problem of finding good

features to track by a spatiotemporal appearance-based ap-

proach. We monitor the quality of features by analyz-

ing both their spatial and temporal appearance. Our novel

method, termed Spatio-Temporal Monitor (STM), gener-

ates a spatiotemporal feature representation, which is used

to detect incorrect correspondences during tracking, even

between ambiguous scene structures. When the same de-

scriptor is used for track generation and monitoring, this de-

tection comes at virtually no additional computational cost.

Please note that there exists a large body of literature on

comparison of interest-point detectors/descriptors. In many

cases (e.g. [18, 19, 5, 16]), quality is measured based on re-
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peatability and stability of points, often under affine warp-

ing, and often just for individual images. While these qual-

ity measures are well-suited, for example, to select good

points for large baseline stereo, they are all based on the

assumption of locally planar support regions.

In contrast, we are not searching for the “best” inter-

est points in an individual frame (for instance, in case of

repetitive patterns, highly salient corners might still lead to

“jumps” in trajectories). Our emphasis is on the continuous

temporal analysis adapting to the individual space-time ap-

pearance of each tracked feature. We make two main contri-

butions in this work. First, we introduce a Spatio-Temporal

Monitor (STM) that generates a spatiotemporal represen-

tation on top of any existing spatial descriptor. This allows

monitoring the features with descriptors that are invariant to

common visual challenges such as a change in the lighting

conditions. The space-time representation is used to calcu-

late a feature quality measure, which adapts to each feature

individually in order to facilitate the selection of a global

feature rejection threshold. Second, we introduce a novel

spatial descriptor called Histogram of Oriented Magnitudes

(HOM) that provides a large degree of invariance to local

deformations and therefore delivers superior results when

used with the STM to detect bad features during tracking.

Experiments on a challenging public dataset, with a large

number of ambiguities in the scenes, reveal the efficacy of

both contributions.

2. The Spatio-Temporal Monitor
To model the quality of the features for tracking, we pro-

pose an effective representation, termed STM, that mod-

els the spatial appearance change of the tracked features

in a small temporal window of scale α. For a given track,

the STM {H,d} holds the descriptors H of all preceding

frames and additionally quantifies the change d of spatial

appearance over time, as shown in Figure 1.

The n columns of H = [h1 · · ·hn] consist of the track’s

descriptors in each temporal instance t = 1, 2, . . . , n, and

d = [d1 · · · dn]� are the distances between each ht and a

single descriptor, which represents the cumulative appear-

ance of the features during tracking. This space-time de-

scriptor hST is computed via a spatiotemporal weighting of

all descriptors of a given track as

hST = Hw, (1)

with the spacetime weights w = [γ1τ1 · · · γnτn]�. The spa-

tial factors γt are calculated as the inverse of the feature

distances, which represent the spatial appearance change

γt =
1

dt
, (2)

and the temporal locality adaptor τt is modelled by a Gaus-

t

h1 h2 hn

d1 d2 dn

hn+1
· · ·

· · ·
dn+1 = ‖hST,hn+1‖

STM {H,d}
hST

Figure 1. Overview of STM-based feature monitoring. For each

feature to track, we generate a spatiotemporal descriptor hST from

the collected spatial descriptors of a given track. At time t = n,

the feature descriptors H of a track are collected with their cor-

responding distances d to form the spatiotemporal representation

hST of the features. At time t = n + 1, we compute the distance

between the next descriptor hn+1 and hST to quantify temporal

feature similarity.

sian

τt = exp

(
− (t− n)2

2α2

)
, (3)

to give higher importance to recent features, where the tem-

poral scale α controls the speed of the weighting decay for

older features. The spatial weights (2) give low influence

to imprecisely located tracks, in contrast to the temporal

weighting (3), which allows a continuous spatial appear-

ance change of the tracking target over time. We subse-

quently normalize the weights, such that ‖w‖1 = 1.

Given hST for t = 1, 2, . . . , n, for each new candidate

feature hn+1, at time t = n+1, the matching distance dn+1

to hST is calculated by using a distance metric (e.g. χ2).

This tuple {hn+1, dn+1} is then added to the STM {H,d},
only if the quality-ratio qn+1 to the existing spatiotemporal

representation of the features is reasonably high:

qn+1 =
d̄

dn+1
> Q, (4)

where Q is a feature quality threshold and d̄ is a weighted

mean of all distances in the STM, computed by using the

temporal weighting τt:

d̄ =

∑N
t=1 τtdt∑N
t=1 τt

. (5)

Eq. (4) allows us to detect bad features to track. For

a steady adaptation of the feature to track, and to maintain

very low memory usage, we propose to discard old STM

entries {ht, dt}, for t < n−3α, during monitoring, as their

influence on the spatiotemporal representation is very low

due to their temporal weights τt < 0.01.

Our feature quality measure q exhibits some major ad-

vantages over common measures such as the GFTT’s affine

deformation model. First, because we use distance ratios in-

stead of absolute distances, a global selection of one quality
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threshold is much easier (e.g. absolute inter-frame feature

distances may change drastically from one trajectory to an-

other). Second, our quality measure adapts to the spatial

change of each feature to track individually and is invariant

to the descriptor type used for monitoring. Third, because of

the temporal weighting τ , our quality measure also adapts

to temporal changes in feature distances (e.g. caused by an

indirect influence of varying illumination on the magnitude

of the feature vector).

The STM has 2 parameters: 1) The feature quality

threshold Q, which decides if a new feature point is consid-

ered as a correct correspondence. 2) The temporal scale α
of the spatiotemporal descriptor within the STM. The STM

can be used with all kinds of (invariant) spatial descriptors

(see the extensive comparative evaluation in section 4), but

it is especially effective with our novel Histogram of Ori-

ented Magnitudes (HOM) descriptor.

3. The Histogram of Oriented Magnitudes
Derivative of Gaussian and Gabor filters are well suited

to resemble biological impulse response functions [7]. With

our proposed HOM descriptor, we try to model simple cells

in the primary visual cortex. We take Gaussian second-

derivative filters G2 at O equally spaced orientations θi,
with the filter parameters chosen similar to the ones used in

[24], which are based on quantitative studies on the proper-

ties of the corresponding simple cells in the primary visual

cortex. We use an elongation ratio of 3:1 along the dominant

orientations θi ∈ {0◦, 45◦, 90◦, 135◦} of the filters, with the

five spatial scales σj ∈ {1, 2, 3, 4, 5}, being the standard de-

viations of the Gaussians. These even-symmetric derivative

of Gaussian filters respond best when centred on a line with

specific width and orientation. Figure 3 illustrates the G2

filters in the spatial domain.

Figure 2. Gaussian second derivative filters at four equally spaced

orientations. Our HOM descriptor uses multiscale filters with re-

sponses collapsed into a single histogram bin to be sensitive for

various spatial scales at a given orientation. Best viewed in colour.

The oriented filter responses M for an image patch P ,

with coordinates x = (x, y)� are computed by convolution

with the orientation selective filters, of orientation θi and

scale σj , according to

M(x, θi, σj) = |P (x) ∗G2(θi, σj)|. (6)

In order to avoid border effects, we extract larger patches

from the image, dependent on the maximum filter size, and

symmetrically replicate the image only if the convolution

would exceed an image border.

Local Contrast Normalization: Because of the bandpass

nature of the filters used, the responses (6) are invariant to

additive photometric effects. To additionally provide invari-

ance to locally varying image contrast, we adopt the pixel-

wise normalization in [28], by normalizing each orientation

selective measurement with respect to the sum of all filter

responses at a given scale:

M̂(θi, σj) =
M(θi, σj)∑O

i=1 M(θi, σj) + ε
, (7)

where a small constant ε is added to the sum of the magni-

tudes over all orientations. This bias operates as a noise

floor and avoids instabilities at low overall magnitudes.

Note that equation (7) cancels out multiplicative photomet-

ric changes, since these appear in both the numerator and

denominator.

Scale Invariant Orientation Measurements: Similar to

the SIFT descriptor [17], the descriptive patch is divided

into N × N = 4 × 4 local cells. The normalized filter re-

sponses M̂(θi, σj) are summed and histogrammed in each

cell. According to their filter orientations θi the responses

cast weighted votes in spatial orientation bins. Measure-

ments for different spatial scales σj but consistent orienta-

tions θi are accumulated in identical bins to provide invari-

ance for small scale shifts

Hi =
∑
j

M̂(θi, σj). (8)

Our scale-invariant, but phase-variant, HOM descriptor is

subsequently constructed by concatenation of the O-bin his-

tograms of oriented magnitudes H for the N×N local cells.

Chromatic Opponency: Visual receptive fields are most

sensitive in a small central region, while the surrounding re-

gion inhibits the responses of the neurons [14]. Such an an-

tagonistic center-surround behavior has been found for light

intensities, red/green and blue/yellow opponencies. Since

the HOM descriptor is designed to model simple cells in the

visual cortex, we apply the descriptor to these colours. The

three considered colour channels, adopted from [14, 27],

are: Intensity I = r+g+b
3 , red/green RG = r−g

max(r,g,b) and

blue/yellow BY = b−min(r,g)
max(r,g,b) , where r, g and b are the red,

green and blue colour channels of the input images. For

pixels with max(r, g, b) < 10% of the maximum possible

value, RG as well as BY are set to zero, because hue vari-

ations are not perceivable at very low luminance [14].

Adding the C colour channels, we obtain an O × N ×
N ×C = 4× 4× 4× 3 = 192 dimensional feature vector.
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Since the HOM descriptor represents a histogram, we L1
normalize it, in order to make histogram distance metrics

applicable for comparison.

The HOM descriptor exhibits some noteworthy proper-

ties for feature monitoring: First, some degree of invariance

to small deformations and changes in rotation, due to the

broad tuning of the filters. Second, invariance to additive

and multiplicative illumination changes, due to the filter’s

bandpass nature and the local contrast normalization (7),

respectively. Third, efficient computations, by perform-

ing the filtering with separable and steerable basis filters,

as described in [10]. Fourth, the generation of a smooth

overlap between the N × N local cells of the patch, due

to the convolution operation, and therefore the avoidance

of boundary effects between them; consequently, we do not

require any additional normalization and interpolation steps

between neighbouring cells.

4. Experiments

We apply the STM to monitor the features to track.

For this task, we generate tracks with two different ap-

proaches: In section 4.1, tracks are generated using a

detector-descriptor-based approach (SIFT-tracks), and in

section 4.2, we show results for optical-flow-based tracks

(LK-tracks) on features detected by the minimum eigen-

value method [25].

Dataset: We demonstrate the performance of STM and

HOM by extensive experimental validation on the challeng-

ing public Robot dataset [1], which provides sufficient com-

plexity, many ambiguities (i.e. highly similar features), and

known spatial correspondences of the scene. The ground

truth consists of camera pose and scene surface information

for 60 different scenes. The images of size 1200×1600 pix-

els are acquired with a moving camera, mounted on an in-

dustrial robot. This setup allows very accurate positioning,

with a standard deviation of approximately 0.1mm, which

corresponds to 0.2-0.3 pixels when back-projected onto the

images [1]. Note that all evaluated methods are indepen-

dent from the scene dynamics. Therefore, using a dynamic

dataset (e.g., the KITTI visual odometry benchmark [12]),

would not affect the performance of the evaluated algo-

rithms. Moreover, these datasets do not provide the same

degree of localization accuracy.

To illustrate a scene of the employed dataset, and

to demonstrate STM-based feature monitoring, Figure 3

shows six trajectories, generated by inter-frame SIFT

matching [17]. The two wrong tracks (i.e. bad features to

track) are correctly detected by the STM, based on a sig-

nificantly decreased quality ratio between the feature in the

current frame and the spatiotemporal feature descriptor of

the previous frames. Since we use the same descriptor for

matching and monitoring, these detections come with very

low computational cost.

Descriptors: we use several descriptors within the STM.

These describe local patches, which correspond to the key-

point frames for the SIFT-tracks and to the tracking tem-

plate for LK-tracks. The STM is evaluated with the fol-

lowing 6 descriptors: 1) The HOM descriptor, as described

in section 3, with the normalization bias empirically set to

ε = 0.1; 2) SIFT [17], 3) HOG; [6]; 4) SURF [4]; 5) a set of

four normalized moment Invariants of order 1 to 4 (INVM)

[13] (to facilitate comparison, we bring these moments into

a common numeric range by applying a log transforma-

tion before comparison); and 6) colour moments (COLM)

[20] invariant to affine geometric deformations and diagonal

photometric transformations.

Spatio-Temporal Scale: An in-depth evaluation of

multiple temporal scales α for the STM, which included

different camera paths with varying inter-frame viewpoint

changes, indicated that precise temporal scale selection is

not necessary in general, with stable results for 2 ≤ α ≤ 5.

Further investigations with multiple spatial scales σ for

the HOM descriptor have shown a steady increase in

performance when increasing the number of scales. We

therefore use five different spatial scales σ ∈ {1, 2, 3, 4, 5},
and α = 3 for all experiments in this paper.

Descriptor Comparison: All the histogram-based de-

scriptors are normalized by using the L1 norm and com-

pared with appropriate histogram distance measures within

the STM; as shown in [2], this yields a higher matching per-

formance in case of the SIFT descriptor. We observe, that

using different histogram distance metrics, such as χ2, only

leads to negligible differences in performance. Therefore,

all our results are based on the Bhattacharyya distance. The

non-histogram-based descriptors (i.e. SURF and moments)

are compared via the Euclidean distance.

Evaluation Methodology: We create Receiver Operator

Characteristic (ROC) curves, by varying the quality thresh-

old Q of the STM. If a feature exhibits a low quality-ratio

qn+1 < Q, we declare the corresponding tracking trajec-

tory as faulty at time n+ 1. For comparison, we also show

the performance of the GFTT method [25], by varying their

feature rejection threshold. The experiments for a single

track may have one of the following outcomes: a) a True

Positive (TP ) occurs only if an incorrectly matched feature

is detected in the same temporal instance (frame) as the tra-

jectory’s first incorrect correspondence in the ground truth;
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(a) (b) (c)

Figure 3. Several SIFT trajectories in frames 10 (a), 20 (b) and 21 (c) of Scene 1. The STM’s feature quality ratio q and the GFTT’s

dissimilarity measure are shown above the corresponding keypoints. The STM identifies the bad features (red), delivering incorrect ground

truth correspondences, by a low quality ratio, only by analysing the spatial appearance change of the SIFT features over time. The GFTT’s

dissimilarity measure diverges among the features and is not able to distinguish between the good (green) and bad (red) features to track.

STM GFTT

HOM SIFT HOG SURF INVM COLM [25]

AUC 0.839 0.625 0.619 0.575 0.603 0.583 0.429

F 0.674 0.397 0.425 0.355 0.428 0.416 0.243

Table 1. Performance for the monitoring of SIFT-tracks, averaged for all scenes.

b) a False Positive (FP ) occurs for detections in other tem-

poral instances; c) a True Negative (TN ) occurs if no in-

correct match is detected and the ground truth also shows

no incorrect correspondence; and d) a False Negative (FN )

occurs if no incorrect match is detected, but the ground truth

shows incorrect correspondences. Along with the ROC

curves, which show the True Positive Rate = TP
TP+FN plot-

ted against the False Positive Rate = FP
FP+TN , we also re-

port the Area Under Curve (AUC) and the maximum F-

measure ( 2·Precision·Recall
Precision+Recall

) as performance measures.

4.1. Detector-Descriptor-Based Tracks

We generate tracks, using Difference of Gaussian key-

points in combination with SIFT descriptors [17], because

this combination is known to perform well under changes of

viewpoint [21]. For these experiments, we use the longest

horizontal camera trajectory, consisting of 49 frames, taken

from a circular camera path around the scene, from a dis-

tance of 0.5m, and a total viewpoint rotation of 80◦ (cf. [1]).

This results in an inter-frame viewpoint change of about

1.6◦. For the inter-frame matching we we follow Lowe’s

ratio criterion of only using matches with a best to second-

best match distance ratio of less than 0.8 [17]. Considering

this matching criterion, we end up with 0 to 961 trajecto-

ries of length 49 for each scene, depending on its contents.

Since several scenes, particularly those showing only a sin-

gle object, generate a small number of trajectories, we only

report results for those 35 scenes that generate more than

100 trajectories. These trajectories are evaluated by using

the proposed STM with different descriptors, applied to the

keypoint ROIs.

The ROC curves for the three scenes with the largest

number of trajectories are shown in the first row of Fig-

ure 4. Each curve represents the detections of the STM for

a different descriptor, with the AUC as reference value for

overall performance. The non-monotonicity in the curves

results from the true positive requirement of detecting the

exact temporal location of the first incorrect match. As

can be seen, STM+HOM outperforms the other combina-

tions, and GFTT by a wide margin. This large performance

gain of STM over GFTT can be explained by the individual

adaptability of our quality measure (4) to each feature, as it

is a ratio based on each individual track rather than a firm

measure for all tracks. As visualized in Figure 3, the good

features can easily be separated from the bad ones, by using

a quality threshold of Q = 0.5 within the STM; whereas the

GFTT dissimilarity measure exhibits large fluctuations and

is not able to monitor the features correctly. In contrast to

GFTT, we analyse the features over a small temporal win-

dow, which provides higher invariance than measuring the

similarity between affine warped templates.

The overall results for all 35 considered scenes are re-

ported in Table 1 by listing the mean AUCs and aver-

age maximum F-Measures. In combination with the STM,

the proposed HOM descriptor significantly outperforms the

GFTT method. Also, the SIFT descriptor is able to detect a

large percentage of incorrect tracks, only by adding tempo-

ral information to the spatial SIFT-tracking procedure.

Please note that the tracks are not generated via brute

force matching of the SIFT features. We only use a subset

of around 2-10% of the features in the first frame, which

satisfy Lowe’s ratio criterion over all 49 frames. All other
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Figure 4. Results for six sample scenes, providing detailed comparison of STM using different spatial feature descriptors with GFTT. The

first row shows results for those three scenes that generated the largest number of SIFT tracks (fulfilling Lowe’s ratio criterion over all

frames). The second and third rows show three selected results for LK-tracks and the corresponding scenes.

STM GFTT

HOM SIFT HOG SURF INVM COLM [25]

AUC
0.825

(0.730)

0.801

(0.704)

0.747

(0.640)

0.548

(0.427)

0.683

(0.556)

0.677

(0.552)

0.261

(0.139)

F
0.755

(0.636)

0.722

(0.607)

0.677

(0.546)

0.487

(0.376)

0.592

(0.461)

0.606

(0.459)

0.276

(0.144)

Table 2. Performance for monitoring LK-tracks on all 56 scenes under diffuse illumination. Parentheses indicate the performance without

considering the soft evaluation setting.

trajectories are rejected. Therefore, the remaining tracks

exhibit already very consistent appearance, so that it is hard

to identify faulty tracks by a purely appearance-based ap-

proach (see e.g. the matching to scene ambiguities in Fig-

ure 3).

4.2. Optical-Flow-Based Tracks

For these experiments, we extract 200 features, based on

the minimum eigenvalue method [25], in the first frame of

56 scenes. We exclude the 4 twigs scenes (57-60) from our

evaluation, because they mainly show virtual crossings in

front of black background regions, where no ground truth

is available from the structured light scans. We use a sup-

pressed region of size 45 × 45 pixels around each detected

corner and a tracking template of 35× 35 pixels. The tem-

plate is tracked by using a robust affine implementation of

the Lucas-Kanade (LK) tracker [3]. Because the LK tracker

has issues with large viewpoint variations, we now use the

images taken from the furthest circular camera path, with

a distance of 0.8m from the scene and a total viewpoint

change of 40◦ [1].

Optical-flow-based tracks tend to long term drift, which

causes an error accumulation over time. For more reason-

able comparisons, we allow the algorithms to detect a faulty

track within a window of ±3 frames around the track’s first

violation of a ground truth criterion and still consider it as
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Q 2 5/4 1 5/6 5/7 5/8 5/9 All

SIFT-tracks features

Mean back-projection error 0.2317 0.2320 0.2628 0.5025 0.8385 1.0453 1.6299 5.7018

Avg. # good features per scene 252.77 375.31 936.09 3805.2 7512.7 9019.5 9789.5 12264

LK-tracks

Mean back-projection error 0.2960 0.2989 0.3382 0.4528 0.6235 0.7782 0.9297 5.9114

Avg. # good features per scene 163.21 255.45 577.95 1786.4 2804.3 3113.3 3255.7 4058

Table 3. Structure and motion estimation with the good feature subset fulfilling the quality Q of STM+HOM. The mean back-projection

error of the estimated 3D points in pixels, averaged over all corresponding features and scenes, is shown. The average number of features

for all scenes and those, which satisfy the STM’s quality threshold Q, is listed below. High quality features generate a significantly lower

estimation error.

a correct detection; however, we also provide the results

without consideration of this soft evaluation setting, by in-

dicating these scores in parentheses.

Results for the experiments on the optical-flow-based

tracks are given in Table 2(a), averaged for 56 scenes. Our

methods provide a significant improvement over the GFTT

approach, with performance gains of 216% (425%) and

174% (342%) in AUC and F-measures, respectively. The

STM performs best combined with the HOM descriptor.

The gradient histogram-based methods SIFT and HOG are

also competitive.

Typical ROC curves for LK-tracks are shown in Figure 4,

where STM+HOM again performs best. Overall, the decent

performance of the 4 dimensional invariant moments and

the generally poor performance of SURF is also remarkable.

Overall, the significantly higher performance of the pro-

posed STM method over GFTT can be attributed to the de-

sign of the STM’s feature quality measure. Because it is a

ratio rather than a firm threshold, as in GFTT, it adapts to

each feature to track individually and therefore is invariant

to the appearance of the underlying features to track. For

GFTT, choosing a good threshold for all trajectories is very

difficult. As reflected in the ROC curves of figure 4, many

false detections occur even for high dissimilarity thresh-

olds, because GFTT always falsely detects many correct

correspondences too. In contrast, our dissimilarity measure

adapts to the features of each single trajectory and further-

more is even invariant to the descriptor type used for moni-

toring. On the other hand, the better performance of HOM

over other descriptors can be explained by its flexibility to

deformations and scale variations. This is because, com-

pared to the discrete derivative masks in gradient orientation

based descriptors (e.g., SIFT, HOG), the proposed HOM is

based on oriented Gaussian derivative filters with multiscale

measurements jointly aggregated in histogram bins.

4.3. Feature Quality for Structure and Motion

The estimation of the scene structure and camera po-

sition is highly important in autonomous driving tasks to

facilitate navigation and collision avoidance. For accurate

camera pose estimation and scene reconstruction, correct

point correspondences have to be established. In this exper-

iment, we evaluate the effect of our feature quality measure

Q on the selection of good feature points for scene structure

and motion estimation. For this purpose, we monitor the er-

ror in the estimation by using a fraction of good features that

fulfil a minimum quality Q. First, 3D points are generated

by triangulating the feature points with the corresponding

projection matrices of the camera (using a DLT algorithm

followed by a Levenberg-Marquardt optimization). Second,

to evaluate the quality of our selected features, we back-

project the estimated 3D points onto the image plane and

calculate the back-projection error. A correct correspon-

dence will deliver a 3D point located on the scene surface,

generating a back-projection of around 0.2-0.3 pixels [1].

We evaluate all SIFT- and LK-tracks and use each fea-

ture only if its quality ratio is larger than Q. The results

are shown in Table 3, where the mean back-projection er-

ror for each subset of good features is shown. We further

list the error for using all features in the last column and,

moreover, the number of features that satisfy the minimum

quality Q, averaged for all scenes (i.e. “Avg. # good fea-

tures per scene”). We observe an inversely monotonic be-

haviour between the STM’s feature quality threshold Q and

the mean back-projection error. The higher Q, the more bad

features are rejected to generate a sparser but more accu-

rate estimation. Overall, we observe a huge benefit in terms

of estimation accuracy by the filtering of bad features with

STM+HOM. For example, for Q =5/8, we can improve the

accuracy by 445% (SIFT tracks) and 658% (LK), by filter-

ing 36% and 25% of the features, respectively.

5. Summary and Discussion
The first main contribution of this paper is the novel

Spatio-Temporal Monitor STM that monitors the quality of

features to track based on their appearance in space and

time. This method combines the temporal dynamics of the

features and their spatial appearance in a unified spatiotem-

poral representation. The major strengths of this approach

are: (i) Because the STM works on top of any tracker, and
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for any spatial descriptor, it can be widely used. (ii) The

STM can be used online, in an incremental fashion, to detect

the instance in time when a particular feature fails. (iii) It

does not use any priors about motion-coherence or scene ge-

ometry. (iv) When the same descriptors are used to generate

and to analyse tracks, this online analysis can be carried out

in the background, at virtually no additional computational

cost.

We have performed a thorough experimental validation

of the STM to compare the power of various commonly

used descriptors, on the spatiotemporal dataset that provides

accurate ground truth, sufficient diversity, and spatial detail.

Our results clearly demonstrate a significant gain (i.e. more

correctly identified wrong tracks) over the GFTT method,

independent of the spatial descriptor that has been used.

The second contribution of this paper is a novel spatial

descriptor, the Histogram of Oriented Magnitudes HOM. It

is based on spatially oriented filter magnitudes, motivated

by biological vision systems. The HOM descriptor toler-

ates slight deformation and rotation of the tracking target,

due to the rather broad tuning of the filters used. It is invari-

ant to additive and multiplicative photometric changes and

it may be implemented very efficiently by using separable

and steerable filters. In combination with the STM, HOM

exhibits superior performance for monitoring features.

In the context of vision-based autonomous driving, this

combination of STM and HOM will be very useful for many

systems. It should be employed to filter good feature tracks

at a low level underneath higher level processes that may ex-

ploit geometric constraints or motion information. Our own

focus will be in the online identification of good features for

Multibody Structure and Motion analysis (see e.g. [23] for

a concise definition of this task). To provide an online anal-

ysis of camera pose and independently moving foreground

objects, we wish to concentrate on a limited number of a

few, but reliable, good tracks. The STM will provide us

with exactly these good features to track. Furthermore, we

expect to reliably harvest more tracks on the moving fore-

ground objects to be able to produce better object models.

We share the code for our methods online at http://
www.emt.tugraz.at/˜pinz/code/.

References
[1] H. Aanæs, A. Dahl, and K. Steenstrup Pedersen. Interesting

interest points. IJCV, 97:18–35, 2012. 4, 5, 6, 7

[2] R. Arandjelovic and A. Zisserman. Three things everyone

should know to improve object retrieval. In CVPR, 2012. 4

[3] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A

unifying framework. IJCV, 56(3):221–255, 2004. 6

[4] H. Bay, T. Tuytelaars, and L. V. Gool. SURF: Speeded up

robust features. In ECCV, 2006. 4

[5] H. Comer and B. Draper. Interest point stability prediction.

In ICVS, 2009. 1

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005. 4

[7] J. G. Daugman. Spatial visual channels in the Fourier plane.

Vision Research, 24(9):891 – 910, 1984. 3

[8] A. J. Davison. Real-time simultaneous localisation and map-

ping with a single camera. In ICCV, 2003. 1

[9] E. Eade and T. Drummond. Scalable monocular SLAM. In

CVPR, 2006. 1

[10] W. Freeman and E. Adelson. The design and use of steerable

filters. PAMI, 13(9):891 –906, 1991. 4

[11] S. Gauglitz, T. Höllerer, and M. Turk. Evaluation of interest

point detectors and feature descriptors for visual tracking.

IJCV, 94:335–360, 2011. 1

[12] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the KITTI vision benchmark suite. In

CVPR, 2012. 4

[13] M.-K. Hu. Visual pattern recognition by moment invariants.

IRE Trans. Info. Theory, 8:179–187, 1962. 4

[14] L. Itti, C. Koch, and E. Niebur. A model of saliency-based

visual attention for rapid scene analysis. PAMI, 20(11):1254

–1259, 1998. 3

[15] G. Klein and D. Murray. Parallel tracking and mapping for

small AR workspaces. In ISMAR, 2007. 1

[16] B. Li, R. Xiao, Z. Li, R. Cai, B.-L. Lu, and L. Zhang. Rank-

SIFT: Learning to rank repeatable local interest points. In

CVPR, 2011. 1

[17] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60:91–110, 2004. 3, 4, 5

[18] K. Mikolajczyk and C. Schmid. A performance evaluation

of local descriptors. PAMI, 27(10):1615–1630, 2005. 1

[19] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman,

J. Matas, F. Schaffalitzky, T. Kadir, and L. V. Gool. A com-

parison of affine region detectors. IJCV, 65(1):43–72, 2005.

1

[20] F. Mindru, T. Tuytelaars, L. V. Gool, and T. Moons. Moment

invariants for recognition under changing viewpoint and il-

lumination. CVIU, 94:3–27, 2004. 4

[21] P. Moreels and P. Perona. Evaluation of features detectors

and descriptors based on 3D objects. In ICCV, 2005. 5

[22] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. In

CVPR, 2004. 1

[23] K. Ozden, K. Schindler, and L. Van Gool. Multibody

structure-from-motion in practice. PAMI, 32(6):1134 –1141,

2010. 1, 8

[24] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Pog-

gio. Robust object recognition with cortex-like mechanisms.

PAMI, 29(3):411 –426, 2007. 3

[25] J. Shi and C. Tomasi. Good features to track. In CVPR, 1994.

1, 4, 5, 6

[26] T. Tommasini, A. Fusiello, E. Trucco, and V. Roberto. Mak-

ing good features track better. In CVPR, 1998. 1

[27] D. Walther and C. Koch. Modeling attention to salient proto-

objects. Neural Networks, 19(9):1395–1407, 2006. 3

[28] R. P. Wildes and J. Bergen. Qualitative spatiotemporal anal-

ysis using an oriented energy representation. In ECCV, 2000.

3

253253


