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A Perceptual Image Sharpness Metric
Based on Local Edge Gradient Analysis

Christoph Feichtenhofer, Hannes Fassold and Peter Schallauer

Abstract—In this paper, a no-reference perceptual sharpness
metric based on a statistical analysis of local edge gradients is
presented. The method takes properties of the human visual sys-
tem into account. Based on perceptual properties, a relationship
between the extracted statistical features and the metric score
is established to form a Perceptual Sharpness Index (PSI). A
comparison with state-of-the-art metrics shows that the proposed
method correlates highly with human perception and exhibits low
computational complexity. In contrast to existing metrics, the PSI
performs well for a wide range of blurriness and shows a high
degree of invariance for different image contents.

Index Terms—Image sharpness, image blur, no-reference,
sharpness metric, perceptual, image quality assessment.

I. INTRODUCTION

THE Human Visual System (HVS) provides the most re-
liable assessments in vision-based quality inspection, but

in practice a subjective approach is costly and time-consuming.
It is obvious that objective techniques are needed to predict
the quality automatically by emulating human subjectivity.

Image quality metrics can be categorized by the amount
of information available from the original undistorted image.
Full-reference metrics have access to both the distorted image
and the original image. Practically, the reference signal is
unavailable in most applications. Thus, no-reference metrics,
which rely only on the distorted image, are required. Various
distortion types may occur during acquisition, processing,
transmission and storage of digital content. No-reference met-
rics are typically designed for specific types of distortions.
This work aims at sharpness estimation. Besides quality
assessment, some further applications for sharpness metrics
are for example automatic image enhancement [1], blind
image deconvolution [2], camera auto-focus systems, the depth
estimation of a scene [3], or image super-resolution [4].

Several spatial, as well as transform-based sharpness metrics
are proposed and discussed in the literature; a comprehensive
overview is given in [5] and [6]. Most of the spatial domain
methods analyze regions around image edges, which are af-
fected by a smoothing or smearing effect under blurring. Ferzli
and Karam [5] and, more recently, Narvekar and Karam [7]
propose spatial domain sharpness metrics, based on a concept
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of “just-noticeable blur”. Their algorithms build on measuring
the edge spreads, initially proposed by Marziliano et al. [8].
A spatial metric which does not concentrate on edge widths
is proposed by Li et al. [9], where sample statistics in the
vicinity of edges in the original and a re-blurred image are
compared. Transform-based methods typically exploit the fact,
that sharp images contain more high frequency content than
blurred images (e.g [1], [10]). A sharpness metric based on
the local phase coherence of complex wavelet coefficients is
proposed in [11], where Hassen et al. utilize the fact that blur
causes a disruption of local phase near sharp image features.
A hybrid approach, combining spatial and transform-based
features, is presented by Vu et al. [6]. They use the slope of
the local magnitude spectrum and the local total variation to
produce a sharpness map. The usually better performance of a
hybrid approach comes with the cost of higher computational
complexity. Recently, a transform-based method with very low
computational complexity was proposed by Vu and Chandler
[10], who measure the log-energy in high frequency discrete
wavelet transform subbands.

Our method is also motivated by the basic idea of measuring
sharpness around edges [5], [7], [8]; however, recent inves-
tigations [6], [10], [11] have shown that spatial-based metrics
are outperformed by transform-based and hybrid metrics. In
this work, we develop a metric, termed Perceptual Sharpness
Index (PSI), that represents the perceived sharpness in an im-
age. Our spatial-based PSI is able to consistently outperforms
transform-based and hybrid metrics by using an improved
way of computing edge widths, and novel approaches for the
selection of relevant measuring points and the pooling of the
local gradient features. We also analyze the edge slopes to
integrate an acutance measure for modeling the influence of
local contrast information on the perception of sharpness. Our
algorithm is computationally fast and requires no training;
all parameters are either based on properties of the HVS, or
determined from our implementation study on the perceptual
performance of the PSI.

II. PERCEPTUAL SHARPNESS INDEX (PSI)

A. Adaptive Edge Selection

The first step of the algorithm is the generation of an edge
map, representing the relevant edges in the image. To this
end, a vertical and horizontal Sobel filter is applied to the
luminance component of the image, followed by a thresholding
and thinning process. The Sobel filter responses are pointwise
squared and summed to form a measure of the squared image
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gradient G, which is thresholded with an adaptive threshold
T = αG, (1)

where G denotes the mean of G and the scaling factor α
is set based on the experimental study on the influence of
this parameter in Section III. By considering the average edge
gradient energy, the adaptive threshold (1) leads to a focus
on the most significant edges in the image. This focus on
high local contrasts adapts to human perception, because the
information in the HVS is represented in terms of contrast
instead of the absolute intensities [12]. After thresholding, a
thinning process is performed as a nonmaximum suppression
along the edge gradients to generate an edge map.

B. Edge Width Measurement

We measure the widths of these significant edges x =
(x, y) by pixel-wise tracing along the edge gradient. Only
approximately vertical gradients are measured to ensure low
computational complexity and reasonably accurate measure-
ments; our own experiments, and tests in [8], show that con-
sidering additional horizontal measurements do not improve
the performance. Surprisingly, we found that incorporating
the measurements of diagonal edge gradients resulted in a
performance decrease. We believe, this is due to the larger
quantization step-width (

√
2) of diagonal pixels, compared to a

spacing of one between pixels in horizontal/vertical direction.
The angle difference between the gradient direction φ(x) =

tan−1
(
Iy(x)
Ix(x)

)
and the tracing direction is denoted by ∆φ(x),

where the image gradient components Ix and Iy are computed
by using finite differences. Consequently, at every edge x, with
approximately vertical gradient direction ∆φ(x) < ∆φmax,
the edge width is computed by

w(x) =
wup(x) + wdown(x)

cos(∆φ(x))
, (2)

where wup(x) and wdown(x) are the distances between the
detected edge pixel x and the traced local maximum Imax(x)
and local minimum Imin(x) luminance pixels, respectively.
Although the denominator in eq. (2) compensates for devi-
ations ∆φ(x) of the edge gradient direction to the tracing
direction, large deviations will incorporate errors into the
measurement process. Thus, only approximately vertical edge
gradients, with a maximum angle difference of ∆φmax, are
considered. Additionally, a measurement point is rejected if
the corresponding gradient starts or ends at an image border.

C. Modeling the Human Perception of Acutance

Receptive fields of retinal cells are much more sensitive
to contrast across a border than to the overall light level [12].
Therefore, the HVS is more sensitive to signal contrast than to
the local absolute signal strength. Motivated by the observation
that high-contrast edges are perceived as sharper, we refine the
metric by taking the edge slopes explicitly into account. The
slope is utilized as an acutance measure, and is given by:

m(x) =
Imax(x)− Imin(x)

w(x)
, (3)

assuming a luminance range of [0, 1]. The measured edge
width is decreased in proportion to the edge slope, to assess

high contrast edges as sharper:

wPSI(x) =

{
w(x)−m(x), if w(x) ≥ wJNB,

w(x) otherwise.
(4)

To imply the just-noticeable difference, perceived by the HVS,
only widths above a minimum width wJNB are reduced. This
minimum width is the Just-Noticeable Blur (JNB) width,
representing the minimum amount of perceived blurriness
around an edge, which depends on the local contrast in
the neighborhood of the edge. It is estimated in subjective
experiments [5] on a blurred edge with different blur amounts,
to 5 pixels for edges with a contrast lower than 50, and 3 pixels
for edges with higher contrast. Since the proposed PSI only
focuses on high contrast edges we use wJNB = 3.

D. Block Based Percentile Pooling

1) Local Sharpness Estimation: To deduce local sharpness
values, the image is divided into blocks of 32 × 32 pixels.
Due to the quantization step of one pixel in the edge width
measurement process, narrow edges may generate a high
quantization error. Therefore, we require at least one measure-
ment from wide edges, or more than one measurements from
narrow edges in each block. Essentially, this corresponds to a
minimum sum of 2 of all measured widths within a block. We
then compute the local sharpness estimates as the reciprocal
of the average wPSI(x) of all measurements in a local block.

2) Global Sharpness Estimation: To ignore out of focus
regions in images with strong depth-of-field effects, and to
adapt to human sharpness perception, the PSI is calculated by
a percentile pooling of the local sharpness estimates as the
highest γth percentile average of the local sharpness values
across the image. This approach has proven to correlate well
with subjective perception [13], [14]. The motivation behind
the percentile pooling is the observation that the sharpest
regions in an image heavily influence human perception of
sharpness.

III. PERCEPTUAL IMPLEMENTATION ANALYSIS

To determine the influence of the parameters, which do
not base on subjective experiments (i.e. ∆φmax, α and γ),
we apply the PSI to the Gaussian blurred images from the
subjective quality assessment database IVC [15] and vary these
parameters. We also provide the optimal parameters1 for the
PSI by analyzing its performance on all publicly available sub-
jective databases with Gaussian blurred images (i.e. LIVE [16],
TID2008 [17], CSIQ [18] and IVC). Nevertheless, our eval-
uations in Section IV show results for the parameters2 based
on IVC only, since using the optimal parameters would imply
a training on the test data; however, when applying the PSI to
arbitrary images the optimal parameters1 should be chosen.

We investigate the impact of all combinations of the three
parameters. First, we observe that varying the maximum angle
difference has only modest effect on performance; generally,
low thresholds ∆φmax ≤ 2◦ decrease performance, as they

1∆φmax = 7◦;α = 5.6; γ = 18 (optimal for LIVE, TID, CSIQ and IVC)
2∆φmax = 8◦;α = 4.7; γ = 22 (used for all evaluations in this paper)



3

do not incorporate enough measurements, and larger thresh-
olds ∆φmax ≥ 15◦ also decreases performance, due to the
integration of imprecise measurements. Second, we investigate
the impact of multiple scaling factors α for the adaptive
threshold, which focuses the PSI on high local contrasts.
Scaling factors α > 3 increase the overall performance, due to
the focus on high contrast edges, which exhibit higher visual
importance; however, using factors α > 9 turns out to decrease
the performance, because not enough edge measurements are
integrated. This also applies for very low percentiles γ < 2 for
the pooling. However, reasonably low pooling percentages lead
to a concentration on the sharpest image blocks; we found that
percentiles γ < 40 are essential for good performance when
assessing the sharpness in images with out of focus regions,
e.g., if the foreground is sharp and the background is blurred.

IV. EXPERIMENTAL RESULTS

In this Section we evaluate the performance of the proposed
PSI and compare it against five state-of-the-art metrics: two
spatial sharpness metrics: JNB [5], CPBD [7], two spectral
sharpness metrics: S3 [6], FISH [10], and two no-reference
quality metrics: DIIVINE [19] and BLIINDS-II [14], by using
the implementations provided by the authors.

The capability of an image quality metric is typically
judged by how well it correlates with human perception
of quality (Section IV-A) and how suited it is for real-
time applications (Section IV-B). A sharpness metric should
additionally decrease monotonically as the blurriness of an
image increases (Section IV-C), and exhibit small variations
for different images with same blur level (Section IV-D).

A. No-Reference Quality Assessment

To predict the quality of several distorted images, we use the
three largest subjective image quality databases LIVE, TID and
CSIQ. These databases provide mean opinion scores (MOS)
from people rating the image quality as ground truth. The
Gaussian-blur datasets, consisting of 174, 150 and 100 images
from LIVE, CSIQ and TID, respectively, are used.

We report the following standard measures to describe the
performance of the predictions: 1) Pearson’s linear corre-
lation coefficient (LCC) indicating the prediction accuracy;
2) the Spearman rank-order correlation coefficient (SROCC),
expressing the monotonicity by ignoring the relative distance
between the data; 3) the Outlier ratio (OR), indicating the
consistency, is the fraction of predictions outside the interval
[MOS - 2σ, MOS + 2σ], where σ is the standard deviation of
the opinion scores for a single image; and 4) the root-mean-
squared error (RMSE). High LCC and SROCC, as well as low
OR and RMSE indicate good predictions of the MOS.

We also show performance scores, conforming to the eval-
uation procedures suggested by the Video Quality Experts
Group [20], where a non-linear mapping of the predictor
results si to the subjective ratings is recommended; each met-
ric score is first mapped, using the suggested four-parameter
logistic function

MOS(si) =
β1 − β2

1 + exp
(
−(si−β3)
|β4|

) + β2, (5)

where the parameters β1, β2, β3, β4 are chosen to minimize
the sum of squared differences between the predicted si and
the MOS. Note, however, that these scores show a less critical
judgment due to the mapping to the desired MOS, also note
that the SROCC does not change due to this mapping, as it
only assesses the correct ordering.

Table I presents the performance for quality prediction of
blurred images. The MOS scores are scaled differently in each
database and therefore the RMSE diverges. Since DIIVINE
and BLIINDS-II are trained on LIVE, their performance is not
listed for this database. Overall, the PSI performs very well in
terms of correlation with human perception, it is significantly
outperforming the other metrics and the best performer or
tied with the best performer on all databases. Only S3 is
competitive, but at much higher computational complexity
(i.e. our PSI is around 400 times faster than S3). Furthermore,
DIIVINE and BLIINDS-II also perform well, even though
these metrics are adjusted for the detection of four additional
distortion types. To express the overall performance gain, we
weight the LCC scores with the number of images in the
respective databases. Our PSI improves the performance over
the second best metric (S3) by 11.31% and 2.30% in LCC and
LCC after non-linear mapping (5), respectively.

TABLE I
PERFORMANCE AND COMPUTATIONAL COMPLEXITY COMPARISON ON

THE BLUR DATASETS, THE TWO BEST PERFORMERS ARE BOLDED

Hybrid Transform-based Spatial-based
S3 FISH DIIVINE BLIINDS-II JNB CPBD PSI

LCC
LIVE 0.8958 0.9096 trained trained 0.8222 0.9128 0.9535
TID 0.7330 0.7430 0.8137 0.7813 0.6535 0.8046 0.8366

CSIQ 0.7703 0.8516 0.8493 0.8198 0.3416 0.8102 0.8901
SROCC

LIVE 0.9634 0.9221 trained trained 0.8423 0.9430 0.9617
TID 0.8418 0.7828 0.8237 0.8206 0.6667 0.8412 0.8493

CSIQ 0.8860 0.8703 0.8483 0.8471 0.7801 0.8644 0.8897
LCC after non-linear mapping (5)

LIVE 0.9189 0.9178 trained trained 0.8428 0.9128 0.9535
TID 0.8541 0.8079 0.8193 0.8260 0.6931 0.8235 0.8546

CSIQ 0.8836 0.8890 0.8625 0.8552 0.8261 0.8553 0.9061
OR after non-linear mapping (5)

LIVE 13.8% 16.1% trained trained 23.6% 16.1% 6.3%
TID 67.0% 67.0% 74.0% 71.0% 73.0% 69.0% 66.0%

CSIQ 34.7% 30.0% 36.0% 31.3% 39.3% 38.0% 26.0%
RMSE after non-linear mapping (5)

LIVE 8.579 8.6341 trained trained 11.706 8.882 6.557
TID 0.6104 0.6915 0.6729 0.6614 0.8459 0.6657 0.6094

CSIQ 0.1342 0.1312 0.1450 0.1485 0.1615 0.1485 0.1212
Average speed (sec./image)

LIVE 37.363 0.0702 29.305 113.034 0.7786 0.6927 0.0783
TID 20.335 0.0327 17.817 57.191 0.4242 0.3727 0.0452

CSIQ 24.994 0.0611 21.575 72.067 0.5416 0.5181 0.0696

B. Runtime Analysis

The average runtime for the compared algorithms is also
listed in Table I. All metrics are implemented in MATLAB
and executed on a 2.8 GHz processor with 4 GB RAM.
The runtime scales with the image sizes which are typically
768 × 512, 512 × 384 and 512 × 512 for LIVE, TID and
CSIQ, respectively. FISH is the fastest sharpness estimator,
due to its special design for low computational complexity.
The proposed PSI is also very fast and competitive to FISH,
because it concentrates on a set of significant edges and
therefore on only a small fraction of all pixels.
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C. Monotonic Blur Prediction

In order to evaluate the metrics’ capability to monotonically
predict increasing amounts of blur, 1411 blurred versions of
all reference images from the databases were generated by
using a circular-symmetric 2D Gaussian kernel of standard
deviation σblur, which ranges from 0.25 to 8.25, in discrete
steps of 0.5 pixels. All of these images are natural, the TID
database also contains an artificial image which is excluded
in this experiment. The results for the four best performing
metrics are visualized in Fig. 1, which shows the metric
values for the blurred versions of the same reference image
by individual lines plotted against the the standard deviation
of the Gaussian blur kernel. The experiments reveal that all
methods decrease monotonically when applied to identical
images with increasing blurriness; however, for high amounts
of blur only the proposed PSI is consistently decreasing.
Moreover, the CPBD, FISH and S3 metrics show a rapid decay
for increasingly blurred content and are unable to appropriately
quantify the amount of blur for heavily blurred images.
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Fig. 1. Performance of different sharpness metrics on blurred versions of
the 83 original images from LIVE, TID and CSIQ, each line represents an
image, blurred with different blur amounts σblur . The proposed PSI shows a
continuously monotonic decreasing behavior for increasing amount of blur.

D. Image Content Invariance

We also report the standard deviation of the sharpness
metrics for slightly blurred versions of the 83 original images,
with same blur amounts σblur. Before calculation of the
standard deviation, the 83 metric scores are normalized to
the interval [0, 1], by dividing each score by the maximum
score for each σblur. The results are shown in Table II, where
the proposed PSI exhibits much lower deviations for different
images at the same blur level, i.e., the average performance
gains over S3 and FISH are 31.70% and 31.93%, respectively.

TABLE II
STANDARD DEVIATION OF THE SHARPNESS METRICS FOR BLURRED

VERSIONS OF THE ORIGINAL IMAGES FROM LIVE, TID AND CSIQ. LOW
DEVIATIONS EXPRESS INVARIANCE TO THE IMAGE CONTENT.

σblur JNB CPBD S3 FISH PSI
0.25 0.1523 0.1017 0.1067 0.1215 0.0638
0.50 0.1714 0.1359 0.1190 0.1303 0.0890
0.75 0.1627 0.1617 0.1456 0.1264 0.0925
1.00 0.1556 0.1690 0.1312 0.1238 0.0924
1.25 0.1474 0.1834 0.1273 0.1296 0.0930

V. CONCLUSION

An effective method for the assessment of perceived sharp-
ness has been presented. This Perceptual Sharpness Index
(PSI) uses extracted edge gradient features by utilizing charac-
teristics of the human visual system. The evaluation on public
quality assessment databases shows that the PSI correlates
highly with human subjective judgments and performs well
for a wide range of blurriness, from slightly to heavily blurred
images, with a large degree of invariance for different image
contents. We have demonstrated that the PSI is computation-
ally efficient making it applicable for many practical imaging
problems, such as quality assessment, blind deconvolution,
automatic image enhancement, and super-resolution.
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